Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement

Date
2013
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Optics Express
Print ISSN
1094-4087
Electronic ISSN
Publisher
Optical Society of America
Volume
21
Issue
20
Pages
23097 - 23106
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Conventional two-dimensional (2D) plasmonic arrays provide electric field intensity enhancement in the plane, typically with a surface coverage around 50% in the plan-view. Here, we show nanoplasmonic three-dimensional (3D) surfaces with 100% surface coverage enabling strong surface-normal field enhancement. Experimental measurements are found to agree well with the full electromagnetic solution. Along with the surface-normal localization when using the plasmonic 3D-surface, observed maximum field enhancement is 7.2-fold stronger in the 3D-surface than that of the 2D counterpart structure. 3D-plasmonic nonplanar surfaces provide the ability to generate volumetric field enhancement, possibly useful for enhanced plasmonic coupling and interactions. © 2013 Optical Society of America.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)