Show simple item record

dc.contributor.authorCamacho, C.en_US
dc.contributor.authorSaglam, C.en_US
dc.contributor.authorTuran, A.en_US
dc.date.accessioned2015-07-28T11:58:03Z
dc.date.available2015-07-28T11:58:03Z
dc.date.issued2013en_US
dc.identifier.issn0304-4068
dc.identifier.urihttp://hdl.handle.net/11693/11554
dc.description.abstractThis paper presents a strategic growth model with endogenous time preference. Due to the potential lack of concavity and the differentiability of the value functions associated with each agent’s problem, we employ the theory of monotone comparative statics and supermodular games based on order and monotonicity properties on lattices. In particular, we provide the sufficient conditions of supermodularity for dynamic games with open-loop strategies based on two fundamental elements: the ability to order elements in the strategy space of the agents and the strategic complementarity which implies upward sloping best responses. The supermodular game structure of the model lets us provide the existence and the monotonicity results on the greatest and the least equilibria. We sharpen these results by showing the differentiability of the value function and the uniqueness of the best response correspondences almost everywhere and show that the stationary state Nash equilibria tend to be symmetric. Finally, we numerically analyze to what extent the strategic complementarity inherent in agents’ strategies can alter the convergence results that could have emerged under a single agent optimal growth model. In particular, we show that the initially rich can pull the poor out of the poverty trap even when sustaining a higher level of steady state capital stock for itself.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Mathematical Economicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmateco.2013.05.002en_US
dc.subjectSupermodular gamesen_US
dc.subjectStrategic growthen_US
dc.subjectLattice programmingen_US
dc.subjectEndogenous time preferenceen_US
dc.titleStrategic interaction and dynamics under endogenous time preferenceen_US
dc.typeArticleen_US
dc.departmentDepartment of Economicsen_US
dc.citation.spage291en_US
dc.citation.epage301en_US
dc.citation.volumeNumber49en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1016/j.jmateco.2013.05.002en_US
dc.publisherElsevieren_US
dc.identifier.eissn1873-1538


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record