Excitonics of semiconductor quantum dots and wires for lighting and displays
Author
Guzelturk, B.
Martinez, P. L. H.
Zhang, Q.
Xiong, Q.
Sun, H.
Sun, X. W.
Govorov, A. O.
Demir, Hilmi Volkan
Date
2013Source Title
Laser & Photonics Reviews
Print ISSN
1863-8880
Electronic ISSN
1863-8899
Publisher
Wiley-VCH Verlag
Volume
8
Issue
1
Pages
73 - 93
Language
English
Type
ReviewItem Usage Stats
133
views
views
164
downloads
downloads
Abstract
In the past two decades, semiconductor quantum dots and wires have developed into new, promising classes of materials for next-generation lighting and display systems due to their superior optical properties. In particular, exciton-exciton interactions through nonradiative energy transfer in hybrid systems of these quantum-confined structures have enabled exciting possibilities in light generation. This review focuses on the excitonics of such quantum dot and wire emitters, particularly transfer of the excitons in the complex media of the quantum dots and wires. Mastering excitonic interactions in low-dimensional systems is essential for the development of better light sources, e.g., high-efficiency, high-quality white-light generation; wide-range color tuning; and high-purity color generation. In addition, introducing plasmon coupling provides the ability to amplify emission in specially designed exciton-plasmon nanostructures and also to exceed the Forster limit in excitonic interactions. In this respect, new routes to control excitonic pathways are reviewed in this paper. The review further discusses research opportunities and challenges in the quantum dot and wire excitonics with a future outlook.
Keywords
ExcitonicsQuantum Dots
Quantum Wires
Quantum Wells
Organics
Carbon Nanotubes
Exciton Transfer
Nonradiative Energy Transfer,excitonic Interactions
Forster Resonance Energy Transfer
Plexcitons
Lighting