• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Interior Architecture and Environmental Design
      • Dept.of Interior Architecture and Environmental Design - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Interior Architecture and Environmental Design
      • Dept.of Interior Architecture and Environmental Design - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The relationship between preference utilizing VR and synoptic thermal evaluation the case of public square of Amirkabir, Arak

      Thumbnail
      View / Download
      5.8 Mb
      Author(s)
      Taghavi Araghi, Seyed Mahziar
      Advisor
      Nouri, Andre Santos
      Date
      2022-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      20
      views
      19
      downloads
      Abstract
      Public Open Spaces (POS) have been proven to have a positive effect on people’s life and overall well-being. As also suggested by the existing literature, the success of a POS can be interrelated with the number of individuals using it. However, the occurrence of Urban Heat Island (UHIs) has increased in recent years as a consequence of climate change which can significantly affect the presence of people in POSs and their usage pattern. Urban green spaces on the other hand can provide shade that covers outdoor environments, attenuating the effects of UHIs. In addition, urban inhabitants can benefit from psycho-physiological advantages of urban green spaces. Meanwhile, Amirkabir square as the first environment with the main concentration on pedestrians rather than vehicles in the city of Arak, needs urgent improvements in both aesthetics and thermal condition. To accomplish this aim, alongside thermal sensitive decision making, the use of virtual reality (VR) as a participatory means can offer a unique opportunity to ensure the positive effects of local interventions. This method and the integrative mergence between these two issues, and how they can frame an initial guidance for local design- oriented action, are interlinked contemporary factors that need to be addressed. As a result, the study's primary objective is to provide interdisciplinary recommendations for architects and urban designers on how to effectively approach the alternation of POSs for enhanced greenery design to approach both thermal comfort and psychological expectations. Hence, this study investigated people's preferences in four greenery design scenarios using VR techniques, then compared them to thermal comfort situations to determine whether the preferred scenario chosen by Araki inhabitants is the same scenario in which people performed best or not. People’s preferences were studied using VR technology and SPSS software for data interpretation. The quantitative thermal microclimatic conditions of Amirkabir urban square were obtained through the application and comparison of energy-based model thermal indices. These indices were the Physiologically Equivalent Temperature (PET) and the modified PET (mPET) through the use of biometeorological RayMan pro model. To facilitate the representation of the results, the Climate Tourism/transfer Information Scheme (CTIS) software was utilized. This innovative methodology revealed in the case of Arak, that the scenario preferred by people (Scenario D, p<.05), is different from the scenario with better thermal performance (Scenario A), and that people’s preferences and thermal outcome on different design scenarios are not necessarily parallel, which draws on local design and planning orientated professionals that shape cities to work in an interdisciplinary manner whilst addressing such crucial aspects. Through such a perspective, the modification of the urban fabric can be made to better ensure the long-term triumph of urban projects.
      Keywords
      Outdoor thermal comfort
      Virtual reality
      Urban green spaces
      PET
      mPET
      Permalink
      http://hdl.handle.net/11693/112041
      Collections
      • Dept.of Interior Architecture and Environmental Design - Master's degree 172
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy