• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Ternary pentagonal BNSi monolayer: Two-dimensional structure with potentially high carrier mobility and strong excitonic effects for photocatalytic applications

      Thumbnail
      View / Download
      1.0 Mb
      Author(s)
      Varjovi, Mirali Jahangirzadeh
      Kılıç, M. E.
      Durgun, Engin
      Date
      2022-03-11
      Source Title
      Physical Review Materials
      Electronic ISSN
      2475-9953
      Publisher
      American Physical Society
      Volume
      6
      Issue
      3
      Pages
      034004-1 - 034004-10
      Language
      English
      Type
      Article
      Item Usage Stats
      3
      views
      8
      downloads
      Abstract
      In recent years many attempts have been made to discover new types of two-dimensional (2D) nanostructures with novel properties beyond the hexagonal crystals. The prediction of pentagraphene has sparked a great deal of research interest to investigate 2D pentagonal systems. In line with these efforts, in this paper, we propose a 2D ternary pentagonal monolayer of BNSi (penta-BNSi) and systematically investigate its structural, vibrational, mechanical, piezoelectric, electronic, photocatalytic, and optical properties by performing first-principles methods. We verify the stability of the penta-BNSi monolayer from the dynamical, thermal, and mechanical aspects based on phonon dispersion, ab initio molecular dynamics, and elastic tensor analysis, respectively. The mechanical properties are examined by calculating in-plane stiffness (Y2D), Poisson's ratio (ν), and ultimate tensile strength and penta-BNSi is found to be soft and ductile. The electronic structure and electronic transport calculations indicate that the penta-BNSi monolayer possesses a quasidirect band gap and anisotropic, potentially high carrier mobility. Due to the noncentral symmetric character and semiconducting feature, an intrinsic piezoelectric response emerges in the structure. In addition, penta-BNSi has a suitable band gap as well as proper band edge positions for photocatalytic water splitting within practical pH levels. The analysis of optical properties, including many-body effects, points out strong exciton binding and high light absorption in the visible and near-UV parts of the spectrum. Our findings not only expand the family of 2D pentagonal materials but also uncover an ideal ultrathin material for photocatalytic applications.
      Permalink
      http://hdl.handle.net/11693/111825
      Published Version (Please cite this version)
      https://doi.org/10.1103/PhysRevMaterials.6.034004
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy