• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Light-driven water oxidation with ligand-engineered Prussian blue analogues

      Thumbnail
      Embargo Lift Date: 2023-02-24
      View / Download
      4.7 Mb
      Author(s)
      Ahmad, Aliyu Aremu
      Ulusoy Ghobadi, Türkan Gamze
      Büyüktemiz, Muhammed
      Özbay, Ekmel
      Dede, Yavuz
      Karadaş, Ferdi
      Date
      2022-02-24
      Source Title
      Inorganic Chemistry
      Print ISSN
      0020-1669
      Electronic ISSN
      1520-510X
      Publisher
      American Chemical Society
      Volume
      61
      Issue
      9
      Pages
      3931 - 3941
      Language
      English
      Type
      Article
      Item Usage Stats
      8
      views
      2
      downloads
      Abstract
      The elucidation of the ideal coordination environment of a catalytic site has been at the heart of catalytic applications. Herein, we show that the water oxidation activities of catalytic cobalt sites in a Prussian blue (PB) structure could be tuned systematically by decorating its coordination sphere with a combination of cyanide and bidentate pyridyl groups. K0.1[Co(bpy)]2.9[Fe(CN)6]2([Cobpy-Fe]), K0.2[Co(phen)]2.8[Fe(CN)6]2([Cophen-Fe]), {[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3([Cobpy2-Fe]), and {[Co(phen)2]3[Fe(CN)6]2}[Fe(CN)6]1/3Cl0.11([Cophen2-Fe]) were prepared by introducing bidentate pyridyl groups (phen: 1,10-phenanthroline, bpy: 2,2′-bipyridine) to the common synthetic protocol of Co-Fe Prussian blue analogues. Characterization studies indicate that [Cobpy2-Fe] and [Cophen2-Fe] adopt a pentanuclear molecular structure, while [Cobpy-Fe] and [Cophen-Fe] could be described as cyanide-based coordination polymers with lower-dimensionality and less crystalline nature compared to the regular Co-Fe Prussian blue analogue (PBA), K0.1Co2.9[Fe(CN)6]2([Co-Fe]). Photocatalytic studies reveal that the activities of [Cobpy-Fe] and [Cophen-Fe] are significantly enhanced compared to those of [Co-Fe], while molecular [Cobpy2-Fe] and [Cophen2-Fe] are inactive toward water oxidation. [Cobpy-Fe] and [Cophen-Fe] exhibit upper-bound turnover frequencies (TOFs) of 1.3 and 0.7 s-1, respectively, which are ∼50 times higher than that of [Co-Fe] (1.8 × 10-2s-1). The complete inactivity of [Cobpy2-Fe] and [Cophen2-Fe] confirms the critical role of aqua coordination to the catalytic cobalt sites for oxygen evolution reaction (OER). Computational studies show that bidentate pyridyl groups enhance the susceptibility of the rate-determining Co(IV)-oxo species to the nucleophilic water attack during the critical O-O bond formation. This study opens a new route toward increasing the intrinsic water oxidation activity of the catalytic sites in PB coordination polymers. © 2022 American Chemical Society. All rights reserved.
      Permalink
      http://hdl.handle.net/11693/111818
      Published Version (Please cite this version)
      https://dx.doi.org/10.1021/acs.inorgchem.1c03531
      Collections
      • Department of Chemistry 707
      • Department of Electrical and Electronics Engineering 4011
      • Department of Physics 2550
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      • Nanotechnology Research Center (NANOTAM) 1179
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy