• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • National Magnetic Resonance Research Center (UMRAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • National Magnetic Resonance Research Center (UMRAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Effects of psychosis-associated genetic markers on brain volumetry: A systematic review of replicated findings and an independent validation

      Thumbnail
      View / Download
      749.5 Kb
      Author(s)
      Ribeiro, Nuno Vouga
      Tavares, Vânia
      Bramon, Elvira
      Toulopoulou, Timothea
      Valli, Isabel
      Shergill, Sukhi
      Murray, Robin
      Prata, Diana
      Date
      2022-09-28
      Source Title
      Psychological Medicine
      Print ISSN
      0033-2917
      Electronic ISSN
      1469-8978
      Publisher
      Cambridge University Press
      Volume
      52
      Issue
      16
      Pages
      3753 - 3768
      Language
      English
      Type
      Review
      Item Usage Stats
      17
      views
      5
      downloads
      Abstract
      Background. Given psychotic illnesses’ high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. Methods. A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, ‘at risk mental state’ or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. Results. We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804Ars11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). Conclusions. Most literature findings were not herein replicated. Nevertheless, high degree/ likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure. © The Author(s), 2022. Published by Cambridge University Press.
      Keywords
      Brain structure
      Candidate genes
      GWAS
      Imaging genetics
      MRI
      Permalink
      http://hdl.handle.net/11693/111817
      Published Version (Please cite this version)
      https://dx.doi.org/10.1017/S0033291722002896
      Collections
      • Aysel Sabuncu Brain Research Center (BAM) 249
      • National Magnetic Resonance Research Center (UMRAM) 301
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy