• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Targeted metabolomics analyses for brain tumor margin assessment during surgery

      Thumbnail
      View / Download
      610.2 Kb
      Author(s)
      Çakmakçı, D.
      Kaynar, Gün
      Bund, C.
      Piotto, M.
      Proust, F.
      Namer, I. J.
      Çiçek, A. Ercüment
      Date
      2022-06-15
      Source Title
      Bioinformatics
      Print ISSN
      1367-4803
      Electronic ISSN
      1367-4811
      Publisher
      Oxford University Press
      Volume
      38
      Issue
      12
      Pages
      3238 - 3244
      Language
      English
      Type
      Article
      Item Usage Stats
      8
      views
      8
      downloads
      Abstract
      Motivation: Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method. However, the time required for metabolite quantification and the need for human experts such as a pathologist to be present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance. Results: In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (electronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spectrum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new candidate for a glioma biomarker. Availability and implementation: The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_ assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769.
      Permalink
      http://hdl.handle.net/11693/111805
      Published Version (Please cite this version)
      https://doi.org/10.1093/bioinformatics/btac309
      Collections
      • Department of Computer Engineering 1561
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy