• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Symmetry-Breaking Plasmonic Mesoporous Gold Nanoparticles with Large Pores

      Thumbnail
      View / Download
      11.2 Mb
      Author(s)
      Nugraha, A. S.
      Guselnikova, O.
      Henzie, J.
      Na, J.
      Hossain, M. S. A.
      Dag, Ömer
      Rowan, A.
      Yamauchi, Y.
      Date
      2022-08-23
      Source Title
      Chemistry of Materials
      Print ISSN
      0897-4756
      Electronic ISSN
      1520-5002
      Publisher
      American Chemical Society
      Volume
      34
      Issue
      16
      Pages
      7256 - 7270
      Language
      English
      Type
      Article
      Item Usage Stats
      2
      views
      1
      downloads
      Abstract
      Creating free-standing gold nanoparticles (Au NPs) with large pores is desirable because the exterior and interior voids can enhance electrocatalytic activity, mass transport, and optical extinction properties. However, the high mobility and significant positive reduction potential of Au precursors make it challenging to create Au NPs with pores of sufficient size to strongly interact with light. We demonstrate a method to synthesize mesoporous Au NPs with large, tunable pores. l-Cysteine acts as a metallogelator to form a dense, less mobile Au(I)-thiolate precursor that traps aggregated block copolymer micelles and facilitates the reduction of mesoporous Au NPs. Electron tomography measurements showed that the pores were distributed throughout the interior and exterior of the particle. Electrochemical methods were used to estimate the chemical reactivity of the surface active sites and estimate the accessible surface area of the pores to ensure that the metal surfaces were maximally accessible to the environment. The 3D models generated by tomography were then used to simulate their optical properties. Mesoporous Au NPs support multipolar plasmon resonances that penetrate deep into the interior pores of the NP. A simple model indicates that porosity affects the local optical conductivity of the NP by subdividing it into tiny nanoscale junctions that redshift the plasmon modes without changing the overall size or shape of the NPs. Large pores promote symmetry breaking, causing the quadrupolar and dipolar modes to overlap and form strongly hybridized plasmon modes. In the context of photocatalysis, porosity-induced symmetry breaking is advantageous because strong electric fields of the plasmon are colocalized along concave/convex features where step-edges and kinks in the atomic structure generate numerous catalytic active sites. Plasmon-enhanced photodegradation of metanil yellow was used to demonstrate the superior photocatalytic properties of meso Au NPs versus nonporous Au NPs.
      Permalink
      http://hdl.handle.net/11693/111648
      Published Version (Please cite this version)
      https://dx.doi.org/10.1021/acs.jnatprod.2c00798
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy