Show simple item record

dc.contributor.authorKoç, Aykut
dc.contributor.authorOzaktas, Haldun M.
dc.date.accessioned2023-02-21T06:40:05Z
dc.date.available2023-02-21T06:40:05Z
dc.date.issued2022
dc.identifier.issn1559-128X
dc.identifier.urihttp://hdl.handle.net/11693/111560
dc.description.abstractThe beam propagation method (BPM) can be viewed as a chain of alternating convolutions and multiplications, as filtering operations alternately in the space and frequency domains or as multiplication operations sandwiched between linear canonical or fractional Fourier transforms. These structures provide alternative models of in homogeneous media and potentially allow mathematical tools and algorithms associated with these transforms to be applied to the BPM. As an example, in the case where quadratic approximation is possible, it is shown that the BPM can be represented as a single LCT system, leading to significantly faster computation of the output field.en_US
dc.language.isoEnglishen_US
dc.source.titleApplied Opticsen_US
dc.relation.isversionofhttps://doi.org/10.1364/AO.472113en_US
dc.titleRelationship between the beam propagation method and linear canonical and fractional Fourier transformsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage10275en_US
dc.citation.epage10282en_US
dc.citation.volumeNumber61en_US
dc.citation.issueNumber34en_US
dc.identifier.doi10.1364/AO.472113en_US
dc.publisherOpticaen_US
dc.contributor.bilkentauthorKoç, Aykut
dc.contributor.bilkentauthorOzaktas, Haldun M.
dc.identifier.eissn2155-3165
buir.contributor.orcidKoç, Aykut|0000-0002-6348-2663en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record