Show simple item record

dc.contributor.authorThung, Y.T.
dc.contributor.authorZhang, Z.
dc.contributor.authorYan, F.
dc.contributor.authorDemir, Hilmi Volkan
dc.contributor.authorSun, H.
dc.date.accessioned2023-02-20T12:47:50Z
dc.date.available2023-02-20T12:47:50Z
dc.date.issued2022-06-15
dc.identifier.urihttp://hdl.handle.net/11693/111550
dc.description.abstractColloidal zinc blende II–VI semiconductor nanoplatelets (NPLs) demonstrate as a promising class of materials for optoelectronic devices due to their unique excitonic characteristics, narrow emission linewidth, and quantum well-structure. Adopting heterostructures for these nanocrystals allows tuning of their optical features and enhances their photostability, photoluminescence (PL), quantum yield (QY), and color purity for further device integration. Exchanging of carboxylate capping ligands on top and bottom [001] facets of CdSe NPLs with halide ligands is an alternative to achieve the aims of spectral tunability and improve surface passivation, but to date there have been no reports on integrating the advantages of halide ligand exchanged CdSe NPLs for device fabrication. In this work, we demonstrate green electroluminescence (EL) of bromide ligand-capped CdSe NPLs as active emitters in an electrically driven light emitting diode (LED) with a low turn-on voltage of 3.0 V. We observed EL emission at 533.1 nm with a narrow linewidth of 19.4 nm, a maximum luminance of 1276 cd/m2, and the highest external quantum efficiency (EQE) of 0.803%. These results highlight the ability of halide ligand exchange in tuning the EL properties of CdSe NPL-LEDs and potential of bromide ligand-capped CdSe NPLs in contributing to the green emission region of NPL-LEDs, demonstrating its potential for future device integration and contribution to a high color rendering index of future NPL displays.en_US
dc.language.isoEnglishen_US
dc.source.titleApplied Physics Lettersen_US
dc.relation.isversionofhttps://doi.org/10.1063/5.0094798en_US
dc.titleNarrow electroluminescence in bromide ligand-capped cadmium chalcogenide nanoplateletsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1en_US
dc.citation.epage7en_US
dc.citation.volumeNumber120en_US
dc.citation.issueNumber24en_US
dc.identifier.doi10.1063/5.0094798en_US
dc.publisherAIP Publishing LLCen_US
dc.contributor.bilkentauthorDemir, Hilmi Volkan
dc.identifier.eissn1077-3118
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112Xen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record