• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Nanotechnology Research Center (NANOTAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Nanotechnology Research Center (NANOTAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Correlation-based study of FEA and IR thermography to reveal the 2DEG temperature of a multi-fingered high-power GaN HEMT

      Thumbnail
      View / Download
      5.7 Mb
      Author(s)
      Koçer, Hasan
      Aras, Yunus Erdem
      Soydan, Mahmut Can
      Butun, Bayram
      Özbay, Ekmel
      Durna, Yılmaz
      Date
      2022-02-23
      Source Title
      Journal of Applied Physics
      Electronic ISSN
      1089-7550
      Publisher
      AIP Publishing LLC
      Volume
      131
      Issue
      8
      Pages
      1 - 9
      Language
      English
      Type
      Article
      Item Usage Stats
      12
      views
      2
      downloads
      Abstract
      High electron mobility transistors (HEMTs) based on gallium nitride (GaN) with a wide range of application potentials need to be rigorously examined for reliability to take advantage of their intrinsically extraordinary properties. The most vital parameter of the reliability, the hotspot, or Tmax, resides in the two-dimensional electron gas (2DEG) temperature profile inside the device where optical access is often restricted. The device surface temperature can be measured by widespread IR thermography with the limitation of diffraction-based IR transmission losses. However, Tmax on the sub-surface cannot be reached thermographically. Although finite element analysis (FEA)-based thermal simulations can easily reveal the 2DEG temperature profile, accuracy is tightly dependent on the realistic modeling of material/structure parameters. Because these parameters are rather sensitive to fabrication and processing, it is quite difficult to specify them accurately. To overcome these drawbacks, a method integrating both IR thermography and FEA thermal analysis is demonstrated on a fabricated high-power 40 × 360 μm packaged GaN HEMT as a proof-of-concept. Utilizing the simulation and measurement temperature profiles, a correlation algorithm is developed so that accuracy of the FEA thermal simulation is improved by calibrating the parameters specific to fabrication/process conditions by thermographic measurement. Then, it is quantitatively shown that the proposed method is able to find the 2DEG temperature profile and Tmax with an accuracy that best suits the intrinsic and extrinsic characteristics of the device under test. The method sheds light on GaN reliability engineering by providing a feasible and reliable alternative to realistically reveal hotspot information for device lifetime assessments.
      Permalink
      http://hdl.handle.net/11693/111545
      Published Version (Please cite this version)
      https://doi.org/10.1063/5.0084511
      Collections
      • Department of Physics 2550
      • Nanotechnology Research Center (NANOTAM) 1179
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy