• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Mechanical Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Mechanical Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Plateau Rayleigh instability of soft elastic solids. Effect of compressibility on pre and post bifurcation behavior

      Thumbnail
      View / Download
      1.9 Mb
      Author(s)
      Dortdivanlioglu, B.
      Javili, Ali
      Date
      2022-08
      Source Title
      Extreme Mechanics Letters
      Electronic ISSN
      2352-4316
      Publisher
      Elsevier
      Volume
      55
      Pages
      101797-1 - 101797-12
      Language
      English
      Type
      Article
      Item Usage Stats
      9
      views
      12
      downloads
      Abstract
      Solid surface tension can deform soft elastic materials at macroscopic length scales. At a critical surface tension, elastocapillary instabilities in soft filaments emerge that resemble the Plateau–Rayleigh (P–R) instabilities in liquids. The experimentally observed P–R instability of soft elastic filaments has been recently investigated via numerical and theoretical approaches. However, these contributions focus on the incompressible limit and preclude the nonlinear Poisson's ratio effects in materials, for example, compressible hydrogels with Poisson's ratios that can go as low as 0.1. Moreover, most of the research on the solid P–R instability elaborate on the onset, ignoring the post-bifurcation regime. Here we show that compressibility matters and the form of the assumed compressible strain energy density has a significant effect on the onset and the post-bifurcation behavior of elastic P–R instability. For example, the P–R instability can be entirely suppressed depending on the form of the free energy density and Poisson's ratio. To this end, we employ a robust and variational elastocapillary formulation and its computer implementation using surface-enriched isogeometric finite elements at finite strains. We use an arclength solver to illustrate both stable-unstable amplitude growth and bifurcation points in the entire equilibrium path. Stability maps are drawn with distinct stable-unstable regions over various shear moduli, surface tensions, fiber radii, and applied stretches for cases ranging from quasi-compressible to fully compressible. The presented elastocapillary model proves to be useful in quantifying the surface and bulk energies in competition at finite strains and expected to help improve mechanical characterization of soft materials with at least one dimension that is on the orders of the elastocapillary lengthscale lsolid∼O(nm – mm).
      Keywords
      Compressible elasticity
      Plateau rayleigh instabilities
      Post bifurcation regime
      Surface tension
      Permalink
      http://hdl.handle.net/11693/111536
      Published Version (Please cite this version)
      https://doi.org/10.1016/j.eml.2022.101797
      Collections
      • Department of Mechanical Engineering 373
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy