• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Unsupervised concept drift detection for multi-label data streams

      Thumbnail
      View / Download
      2.6 Mb
      Author(s)
      Gülcan, Ege Berkay
      Can, Fazlı
      Date
      2022-07-17
      Source Title
      Artificial Intelligence Review
      Print ISSN
      026-92821
      Publisher
      Springer
      Volume
      56
      Pages
      2401 - 2434
      Type
      Article
      Item Usage Stats
      3
      views
      23
      downloads
      Abstract
      Many real-world applications adopt multi-label data streams as the need for algorithms to deal with rapidly changing data increases. Changes in data distribution, also known as concept drift, cause existing classification models to rapidly lose their effectiveness. To assist the classifiers, we propose a novel algorithm called Label Dependency Drift Detector (LD3), an unsupervised concept drift detector using label dependencies within the data for multi-label data streams. Our study exploits the dynamic temporal dependencies between labels using a label influence ranking method, which leverages a data fusion algorithm and uses the produced ranking to detect concept drift. LD3 is the first unsupervised concept drift detection algorithm in the multi-label classification problem area. In this study, we perform an extensive evaluation of LD3 by comparing it with 14 prevalent supervised concept drift detection algorithms that we adapt to the problem area using 15 datasets and a baseline classifier. The results show that LD3 provides between 16.9 and 56% better predictive performance than comparable detectors on both real-world and synthetic data streams. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.
      Keywords
      Big data
      Concept drift
      Drift detection
      Multi-label classification
      Multi-label data stream
      Permalink
      http://hdl.handle.net/11693/111506
      Published Version (Please cite this version)
      https://doi.org/10.1007/s10462-022-10232-2
      Collections
      • Department of Computer Engineering 1561
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy