• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      All-colloidal parity–time-symmetric microfiber lasers balanced between the gain of colloidal quantum wells and the loss of colloidal metal nanoparticles

      Thumbnail
      View / Download
      1.5 Mb
      Author(s)
      Foroutan-Barenji, Sina
      Shabani, Farzan
      Işık, Ahmet Tarik
      Dikmen, Zeynep
      Demir, Hilmi Volkan
      Date
      2022-08-23
      Source Title
      Nanoscale
      Electronic ISSN
      2040-3372
      Publisher
      Royal Society of Chemistry
      Volume
      37
      Issue
      14
      Pages
      13755 - 13762
      Language
      English
      Type
      Article
      Item Usage Stats
      4
      views
      4
      downloads
      Abstract
      Lasers based on semiconductor colloidal quantum wells (CQWs) have attracted wide attention, thanks to their facile solution-processability, low threshold and wide range spectral tunability. Colloidal microlasers based on whispering-gallery-mode (WGM) resonators have already been widely demonstrated. However, due to their microscale size typically supporting multiple modes, they suffer from multimode competition and higher threshold. The ability to control the multiplicity of modes oscillating within colloidal laser resonators and achieving single-mode lasers is of fundamental importance in many photonic applications. Here we show that as a unique, simple and versatile architecture of all-colloidal lasers intrinsically enabled by balanced gain/loss segments, the lasing threshold reduction and spectral purification can be readily achieved in a system of a WGM-supported microfiber cavity by harnessing the notions of parity–time symmetry (PT). In particular, we demonstrate a proof-of-concept PT-symmetric microfiber laser employing CQWs as the colloidal gain medium along with a carefully tuned nanocomposite of Ag nanoparticles (Ag NPs) incorporated into a PMMA matrix altogether and conveniently coated around a coreless microfiber as a rigorously tailored colloidal loss medium to balance the gain. The realization of gain/loss segments in our PT-symmetric all-colloidal arrangement is independent of selected pumping, reducing the complexity of the system and making compact device applications feasible, where control over the pumping is not possible. We observed a reduction in the number of modes, resulting in a reduced threshold and enhanced output power of the PT-symmetric laser. The PT-symmetric CQW-WGM microcavity architecture offers new opportunities towards simple implementation of high-performance optical resonators for colloidal lasers.
      Permalink
      http://hdl.handle.net/11693/111445
      Published Version (Please cite this version)
      https://doi.org/10.1039/D2NR02146C
      Collections
      • Department of Electrical and Electronics Engineering 4011
      • Department of Physics 2550
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy