• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • National Magnetic Resonance Research Center (UMRAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • National Magnetic Resonance Research Center (UMRAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Gender bias in legal corpora and debiasing it

      Thumbnail
      View / Download
      1.5 Mb
      Author(s)
      Koç, Aykut
      Sevim, Nurullah
      Şahinuç, Furkan
      Date
      2022-03-30
      Source Title
      Natural Language Engineering
      Print ISSN
      1351-3249
      Electronic ISSN
      1469-8110
      Publisher
      Cambridge University Press
      Pages
      1 - 34
      Language
      English
      Type
      Article
      Item Usage Stats
      9
      views
      18
      downloads
      Abstract
      Word embeddings have become important building blocks that are used profoundly in natural language processing (NLP). Despite their several advantages, word embeddings can unintentionally accommodate some gender- and ethnicity-based biases that are present within the corpora they are trained on. Therefore, ethical concerns have been raised since word embeddings are extensively used in several high-level algorithms. Studying such biases and debiasing them have recently become an important research endeavor. Various studies have been conducted to measure the extent of bias that word embeddings capture and to eradicate them. Concurrently, as another subfield that has started to gain traction recently, the applications of NLP in the field of law have started to increase and develop rapidly. As law has a direct and utmost effect on people’s lives, the issues of bias for NLP applications in legal domain are certainly important. However, to the best of our knowledge, bias issues have not yet been studied in the context of legal corpora. In this article, we approach the gender bias problem from the scope of legal text processing domain. Word embedding models that are trained on corpora composed by legal documents and legislation from different countries have been utilized to measure and eliminate gender bias in legal documents. Several methods have been employed to reveal the degree of gender bias and observe its variations over countries. Moreover, a debiasing method has been used to neutralize unwanted bias. The preservation of semantic coherence of the debiased vector space has also been demonstrated by using high-level tasks. Finally, overall results and their implications have been discussed in the scope of NLP in legal domain.
      Keywords
      Bias
      NLP in law
      Legal text processing
      Law
      Computational law
      Permalink
      http://hdl.handle.net/11693/111389
      Published Version (Please cite this version)
      http://dx.doi.org/10.1017/S1351324922000122
      Collections
      • Department of Electrical and Electronics Engineering 4011
      • National Magnetic Resonance Research Center (UMRAM) 301
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy