Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Date
2022-01-27
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Medical Imaging
Print ISSN
0278-0062
Electronic ISSN
1558-254X
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
41
Issue
7
Pages
1747 - 1763
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Supervised reconstruction models are characteristically trained on matched pairs of undersampled and fully-sampled data to capture an MRI prior, along with supervision regarding the imaging operator to enforce data consistency. To reduce supervision requirements, the recent deep image prior framework instead conjoins untrained MRI priors with the imaging operator during inference. Yet, canonical convolutional architectures are suboptimal in capturing long-range relationships, and priors based on randomly initialized networks may yield suboptimal performance. To address these limitations, here we introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adversarial TransformERs (SLATER). SLATER embodies a deep adversarial network with cross-attention transformers to map noise and latent variables onto coil-combined MR images. During pre-training, this unconditional network learns a high-quality MRI prior in an unsupervised generative modeling task. During inference, a zero-shot reconstruction is then performed by incorporating the imaging operator and optimizing the prior to maximize consistency to undersampled data. Comprehensive experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against state-of-the-art unsupervised methods.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)