• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Feedforward neural network based case prediction in Turkish higher courts

      Thumbnail
      View / Download
      847.1 Kb
      Author(s)
      Aras, Arda C.
      Öztürk, Ceyhun E.
      Koç, Aykut
      Date
      2022-08-29
      Source Title
      Signal Processing and Communications Applications Conference (SIU)
      Print ISSN
      2165-0608
      Pages
      [1] - [4]
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      10
      views
      8
      downloads
      Abstract
      Thanks to natural language processing (NLP) methods, legal texts can be processed by computers and decision prediction applications can be developed in the legal tech field. Increase in the available data sources in the Turkish legal system provides an opportunity to develop NLP applications as well. In order to develop these applications, the necessary corpora and datasets should be created. In this work, legal case texts from the Turkish Higher Courts that are open to public access and free from personal data are used to develop decision prediction methods. Feedforward neural networks (FFNN) are deployed using word embeddings and the features extracted from texts via the Principal Component Analysis (PCA) algorithm. %85.4 Macro F1 score level is achieved.
       
      Doğal dil işleme (DDİ) yöntemleri sayesinde hukuki metinler bilgisayarlar tarafından işlenip, hukuk alanında karar tahmin uygulamaları geliştirilebilmektedir. Türk Hukuk sistemindeki açık veri kaynaklarının da her geçen gün artması, bu alan için yeni uygulamalar geliştirilmesine fırsat sunmaktadır. DDİ uygulamaların geliştirilebilmesi için gerekli derlemlere ulaşılmalıdır. Bu çalışmada Türk üst mahkemelerinin sitelerinde kamu erişimine açık yayımlanan ve kişisel bilgilerden arındırılmış dava metinleri karar tahmin yöntemlerinin geliştirilmesi için kullanılmıştır. Derlem elde edildikten sonra İleri Beslemeli Sinir Ağları (FFNN), kelime temsilleri ve metinlerden Temel Bileşenler Analizi (PCA) ile çıkarılan öznitelikler kullanılarak eğitimler yapılmıştır. Karar tahmini için %85.4 Makro F1 skoruna ulaşılmıştır.
      Keywords
      Natural language processing
      Feedforward neural networks
      Legal tech
      Legal NLP
      Doğal dil işleme
      İleri beslemeli basit sinir ağları
      Türkiye yüksek mahkemeleri
      Permalink
      http://hdl.handle.net/11693/111341
      Published Version (Please cite this version)
      https://www.doi.org/10.1109/SIU55565.2022.9864970
      Collections
      • Department of Electrical and Electronics Engineering 4011
      • National Magnetic Resonance Research Center (UMRAM) 301
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy