• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A graphical network layer for lagged analysis of FMRI data

      Thumbnail
      View / Download
      1.1 Mb
      Author(s)
      Bedel, Hasan Atakan
      Şıvgın, Irmak
      Çukur, Tolga
      Date
      2022-08-29
      Source Title
      Signal Processing and Communications Applications Conference (SIU)
      Print ISSN
      2165-0608
      Publisher
      IEEE
      Pages
      [1] - [4]
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      9
      views
      5
      downloads
      Abstract
      Functional magnetic resonance imaging (fMRI) enables recording the brain’s neural activity spatiotemporally and is the center of much cutting-edge psychology and neuroscience research. Many methods are proposed to process the 4-dimensional data the fMRI scans provide. The most common approach for classification tasks is to analyze functional connectivity, where brain volume is parcelled to regions, and the correlation between their time series is calculated. Such an approach is very suitable for graphical neural networks, a popular deep learning method for graphical data analysis. A graph is constructed by formulating the parcelled brain regions as the graph nodes, while their features and edges are constructed from the correlations. However, in many studies, the correlations are calculated from simple methods that do not take account of the lagged relations between the node time-series. This paper addresses this issue by proposing a new graphical neural network layer. This layer accounts for lagged relationships between the nodes and learns reacher features rather than simple zero-lag correlations. We show that our graphical layer can be used in front of a known graphical model and increase its performance for two different downstream tasks in a large fMRI dataset.
       
      Fonksiyonel manyetik rezonans görüntüleme (fMRG), beyindeki sinirsel etkinliği zamansal ve uzamsal olarak kaydedebilen bir görüntüleme tekniğidir ve yenilikçi psikoloji ve sinirbilimi araştırmalarının merkezindedir. fMRG taramalarının 4 boyutlu verisini işleyebilmek için çeşitli metotlar önerilmiştir. Sınıflandırma çalışmalarında en yaygın olarak kullanılan teknik, beynin bölgelere ayrılması ve bu bölgelerin zaman serileri arasında korelasyon hesaplanmasıyla bulunan fonksiyonel bağlılık ölçütüdür. Söz konusu yaklaşım, grafiksel verilerin derin öğrenme ile işlenmesinde popüler bir teknik olan grafiksel sinir ağlarında kullanmak için uygundur. Grafiksel sinir ağlarında bölünmüş beyin bölgeleri düğümleri oluştururken düğümler arasındaki bağlantılar ve düğümlerin özellik vektörleri korelasyon hesabına dayanır. Çoğu çalışmada bu korelasyon hesabı yapılırken dü- ğümlerin zaman serileri arasındaki gecikmeli ilişkiler göz ardı edilmektedir. Bu makalede önerilen yeni sinirsel ağ katmanıyla gecikmeli ilişkilerin etkisinin incelenmesi hedeflenmiştir. Bu katman düğümler arasında gecikmeli ilişki hesabı yaparak basit, sıfır gecikmeli korelasyona göre daha zengin özellik vektörleri oluşturulmasını sağlar. Bu makaleyle, önerdiğimiz grafiksel katmanın bilinen başka bir grafiksel modelin önüne eklenmesi sonucu performans artımı sağlanabileceğini 2 çalışmayla gösteriyoruz.
      Keywords
      fMRI
      Deep learning
      Graphical neural networks
      fMRG
      Derin öğrenme
      Grafik sinir ağları
      Permalink
      http://hdl.handle.net/11693/111296
      Published Version (Please cite this version)
      https://www.doi.org/10.1109/SIU55565.2022.9864826
      Collections
      • Department of Electrical and Electronics Engineering 4011
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy