• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Improving image synthesis quality in multi-contrast MRI using transfer learning via autoencoders

      Thumbnail
      View / Download
      1.0 Mb
      Author(s)
      Selçuk, Şahan Yoruç
      Dalmaz, Onat
      Ul Hassan Dar, Salman
      Çukur, Tolga
      Date
      2022-08-29
      Source Title
      Signal Processing and Communications Applications Conference (SIU)
      Print ISSN
      2165-0608
      Publisher
      IEEE
      Pages
      [1] - [4]
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      14
      views
      8
      downloads
      Abstract
      The capacity of magnetic resonance imaging (MRI) to capture several contrasts within a session enables it to obtain increased diagnostic information. However, such multi-contrast MRI tests take a long time to scan, resulting in acquiring just a part of the essential contrasts. Synthetic multi-contrast MRI has the potential to improve radiological observations and consequent image analysis activities. Because of its ability to generate realistic results, generative adversarial networks (GAN) have recently been the most popular choice for medical imaging synthesis. This paper proposes a novel generative adversarial framework to improve the image synthesis quality in multi-contrast MRI. Our method uses transfer learning to adapt pre-trained autoencoder networks to the synthesis task and enhances the image synthesis quality by initializing the training process with more optimal network parameters. We demonstrate that the proposed method outperforms competing synthesis models by 0.95 dB on average on a well-known multi-contrast MRI dataset.
      Keywords
      Multi-contrast MRI
      Autoencoder
      Transfer learning
      Generative adversarial networks
      Permalink
      http://hdl.handle.net/11693/111273
      Published Version (Please cite this version)
      https://www.doi.org/10.1109/SIU55565.2022.9864750
      Collections
      • Aysel Sabuncu Brain Research Center (BAM) 249
      • Department of Electrical and Electronics Engineering 4011
      • National Magnetic Resonance Research Center (UMRAM) 301
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy