• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Work in Progress
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Work in Progress
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      YOLODrone+: improved YOLO architecture for object detection in UAV images

      Thumbnail
      View / Download
      1.3 Mb
      Author(s)
      Şahin, Öykü
      Özer, Sedat
      Date
      2022-08-29
      Source Title
      Signal Processing and Communications Applications Conference (SIU)
      Print ISSN
      2165-0608
      Publisher
      IEEE
      Pages
      [1] - [4]
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      15
      views
      18
      downloads
      Abstract
      The performance of object detection algorithms running on images taken from Unmanned Aerial Vehicles (UAVs) remains limited when compared to the object detection algorithms running on ground taken images. Due to its various features, YOLO based models, as a part of one-stage object detectors, are preferred in many UAV based applications. In this paper, we are proposing novel architectural improvements to the YO-LOv5 architecture. Our improvements include: (i) increasing the number of detection layers and (ii) use of transformers in the model. In order to train and test the performance of our proposed model, we used VisDrone and SkyData datasets in our paper. Our test results suggest that our proposed solutions can improve the detection accuracy.
       
      İnsansız Hava Araçları (İHA) üzerindeki kameralardan alınan görüntülerde, nesne tanıma algoritmalarının başarımı, yerden çekilen görüntülerdeki performanslara göre daha sınırlı kalabilmektedir. Birçok İHA uygulamasında, tekgeçişli olmasından ve iki-geçişli yöntemlere göre daha hızlı olmasından dolayı, önceden eğitilmiş modelleri ile beraber gelen YOLOv5 algoritması kullanılmaya başlanmıştır. Ancak YOLOv5 algoritmasının İHA tabanlı imgeler üzerindeki performansı, yerden çekilen resimler üzerindeki performansına oranla düşük kalmaktadır. O nedenle bu çalışmada, YOLOv5 algoritmasının performansını arttırmak adına mimari çözümler önerilmiştir. Bu çözümler: (i) farklı sayıda tahmin yapan katman kullanmak, ve (ii) dönüştürücü (transformer) katmanı kullanmak olarak sıralanabilir. Sunulan yöntem, en güncel olan VisDrone ve Sky- DataV1 veri kümeleri üzerinde, orijinal YOLOv5 algoritması ile karşılaştırıldığında, performans artışı sağlamıştır.
      Keywords
      Deep learning
      Object detection
      UAV
      Derin öğrenme
      Nesne tanıma
      İHA
      Permalink
      http://hdl.handle.net/11693/111266
      Published Version (Please cite this version)
      https://www.doi.org/10.1109/SIU55565.2022.9864746
      Collections
      • Work in Progress 376
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy