• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The performance comparison of different training strategies for reinforcement learning on DeepRTS

      Thumbnail
      View / Download
      1.1 Mb
      Author(s)
      Şahin, Safa Onur
      Yücesoy, Veysel
      Date
      2022-08-29
      Source Title
      IEEE Signal Processing and Communications Applications (SIU)
      Print ISSN
      2165-0608
      Publisher
      IEEE
      Pages
      [1] - [4]
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      28
      views
      12
      downloads
      Abstract
      In this paper, we train reinforcement learning agents on the game of DeepRTS under different training strategies, which are i) training against rule based agents, ii) self-training and iii) training by adversarial attack to another agent. We perform certain modifications on the DeepRTS game and the reinforcement learning framework to make it closer to real life decision making problems. For this purpose, we allow agents take macro actions based on human heuristics, where these actions may last multiple time steps and the durations for these actions may differ from each other. In addition, the agents simultaneously take actions for each available unit at a time step. We train the reinforcement learning based agents under three different training strategies and we provide a detailed performance analysis of these agents against several reference agents.
       
      Bu bildiride, yapay zeka tabanlı ajanların öğrenim yapması amacıyla geliştirilen DeepRTS oyunu üzerinde i) kural tabanlı ajanlara karşı eğitim, ii) kendi kopyasına karşı egitim ve iii) egitimi tamamlanmış pekiştirmeli öğrenme ajanına çekişmeli atak ile egitim olmak üzere üç farklı eğitim stratejisi kullanılarak ajanların eğitimi tamamlanmış ve bu ajanlar üzerinde ilgili performans analizleri yapılmıştır. Gerçek hayat karar alma problemlerine benzetme amacıyla eğitim yapılan ortam ve pekiştirmeli ögrenme çerçevesi üzerinde çeşitli değişikliler ˘ uygulanmıştır. Ajanların makro aksiyonlar ile karar alması sağlanmış, bu aksiyonların birden fazla zaman adımı sürebilmesine ve birbirlerinden farklı süreler alabilmesine olanak saglanmıştır. Ayrıca, herhangi bir zaman adımında birden fazla ve değişken sayıdaki üniteye komut verilebilmektedir. Ajanların üç farklı eğitim stratejisi altında eğitimleri tamamlanmış, ve çok sayıdaki referans ajana karşı performansı raporlanmıştır.
      Keywords
      Training
      Decision making
      Reinforcement learning
      Games
      Signal processing
      Performance analysis
      Derin pekiştirmeli öğrenme
      Öz eğitim
      Çekişmeli atak ile eğitim
      Gerçek zamanlı strateji
      Eş zamanlı makro aksiyonlar
      Permalink
      http://hdl.handle.net/11693/111216
      Published Version (Please cite this version)
      https://www.doi.org/10.1109/SIU55565.2022.9864884
      Collections
      • Department of Electrical and Electronics Engineering 4011
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy