• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Improving the performance of YOLO-based detection algorithms for small object detection in UAV-taken images

      Thumbnail
      View / Download
      86.2 Mb
      Author(s)
      Şahin, Öykü
      Advisor
      Körpeoğlu, İbrahim
      Date
      2023-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      72
      views
      65
      downloads
      Abstract
      Recent advances in computer vision yield emerging novel applications for cameraequipped unmanned aerial vehicles such as object detection. The accuracy of the existing object detection solutions running on images acquired by Unmanned Aerial Vehicles (UAVs) is limited when compared to the performance of the object detection solutions designed for ground-taken images. Existing object detection solutions demonstrate lower performance on aerial datasets because of the reasons originating from the nature of the UAVs. These reasons can be summarized as: (i) the lack of large drone datasets with different types of objects, (ii) the larger variance in both scale and orientation of objects in drone images, and (iii) the difference in shape and texture of the features between the ground and the aerial images. Due to these reasons, YOLO-based models, a popular family of one-stage object detectors, perform insufficiently in UAV-based applications. In this thesis, two improved YOLO models: YOLODrone and YOLODrone+ are introduced for detecting objects in drone images. The performance of the models are tested on VisDrone2019 and SkyDataV1 datasets and improved results are reported when compared to the original YOLOv3 and YOLOv5 models.
      Keywords
      Object detection
      Drone vision
      Deep neural network
      YOLOs
      Permalink
      http://hdl.handle.net/11693/111198
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy