dc.contributor.advisor | Güloğlu, Ahmet Muhtar | |
dc.contributor.author | Kavalcı, Cazibe | |
dc.date.accessioned | 2023-02-07T08:34:08Z | |
dc.date.available | 2023-02-07T08:34:08Z | |
dc.date.copyright | 2023-01 | |
dc.date.issued | 2023-01 | |
dc.date.submitted | 2023-01-17 | |
dc.identifier.uri | http://hdl.handle.net/11693/111196 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Thesis (Master's): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2023. | en_US |
dc.description | Includes bibliographical references (leave 24-26). | en_US |
dc.description.abstract | We study the one-level density of low-lying zeros of a family of L-functions associated
with cubic Hecke characters defined over the Eisenstein field. We show that
this family of L-functions satisfies the Katz-Sarnak conjecture for all test functions
whose Fourier transforms are supported in (−1, 1), under the Generalized
Riemann Hypothesis. | en_US |
dc.description.statementofresponsibility | by Cazibe Kavalcı | en_US |
dc.format.extent | vi, 26 leaves ; 30 cm. | en_US |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | One level density | en_US |
dc.subject | Cubic Hecke L-functions | en_US |
dc.subject | Katz-Sarnak conjecture | en_US |
dc.title | One level density of Hecke L-functions associated with cubic characters at prime arguments | en_US |
dc.title.alternative | Kübik Hecke L-fonksiyonlarının 1/2 noktasına yakın sfırlarının dağılımı | en_US |
dc.type | Thesis | en_US |
dc.department | Department of Mathematics | en_US |
dc.publisher | Bilkent University | en_US |
dc.description.degree | M.S. | en_US |
dc.identifier.itemid | B161691 | |