Show simple item record

dc.contributor.advisorGüloğlu, Ahmet Muhtar
dc.contributor.authorKavalcı, Cazibe
dc.date.accessioned2023-02-07T08:34:08Z
dc.date.available2023-02-07T08:34:08Z
dc.date.copyright2023-01
dc.date.issued2023-01
dc.date.submitted2023-01-17
dc.identifier.urihttp://hdl.handle.net/11693/111196
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2023.en_US
dc.descriptionIncludes bibliographical references (leave 24-26).en_US
dc.description.abstractWe study the one-level density of low-lying zeros of a family of L-functions associated with cubic Hecke characters defined over the Eisenstein field. We show that this family of L-functions satisfies the Katz-Sarnak conjecture for all test functions whose Fourier transforms are supported in (−1, 1), under the Generalized Riemann Hypothesis.en_US
dc.description.statementofresponsibilityby Cazibe Kavalcıen_US
dc.format.extentvi, 26 leaves ; 30 cm.en_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOne level densityen_US
dc.subjectCubic Hecke L-functionsen_US
dc.subjectKatz-Sarnak conjectureen_US
dc.titleOne level density of Hecke L-functions associated with cubic characters at prime argumentsen_US
dc.title.alternativeKübik Hecke L-fonksiyonlarının 1/2 noktasına yakın sfırlarının dağılımıen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidB161691


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record