• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Towards modeling and mitigating misinformation propagation in online social networks

      Thumbnail
      Embargo Lift Date: 2023-07-19
      View / Download
      5.1 Mb
      Author(s)
      Yılmaz, Tolga
      Advisor
      Ulusoy, Özgür
      Date
      2023-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      59
      views
      1
      downloads
      Abstract
      Misinformation on the internet and social media has become a pressing concern due to its potential impacts on society, undermining trust and impacting human decisions on global issues such as health, energy, politics, terrorism, and disasters. As a solution to the problem, computational methods have been employed to detect and mitigate the spread of false or misleading information. These efforts have included the development of algorithms to identify fake news and troll accounts, as well as research on the dissemination of misinformation on social media platforms. However, the problem of misinformation on the web and social networks remains a complex and ongoing challenge, requiring continued attention and research. We contribute to three different solution aspects of the problem. First, we design and implement an extensible social network simulation framework called Crowd that helps model, simulate, visualize and analyze social network scenarios. Second, we gamify misinformation propagation as a cooperative game between nodes and identify how misinformation spreads under various criteria. Then, we design a network-level game where the nodes are controlled from a higher perspective. In this game, we train and test a deep reinforcement learning method based on Multi-Agent Deep Deterministic Policy Gradients and show that our method outperforms well-known node-selection algorithms, such as page-rank, centrality, and CELF, over various social networks in defending against misinformation or participating in it. Finally, we promote and propose a blockchain and deep learning hybrid approach that utilizes crowdsourcing to target the misinformation problem while providing transparency, immutability, and validity of votes. We provide the results of extensive simulations under various combinations of well-known attacks on reputation systems and a case study that compares our results with a current study on Twitter.
      Keywords
      Misinformation propagation
      Online social networks
      Reinforcement learning
      Cooperative games
      Blockchain
      Crowdsourcing
      Reputation systems
      Permalink
      http://hdl.handle.net/11693/111194
      Collections
      • Dept. of Computer Engineering - Ph.D. / Sc.D. 84
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy