• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      FourierNet: shape-preserving network for henle’s fiber layer segmentation in optical coherence tomography images

      Thumbnail
      View / Download
      8.3 Mb
      Author(s)
      Cansız, Selahattin
      Advisor
      Demir, Çiğdem Gündüz
      Date
      2022-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      121
      views
      32
      downloads
      Abstract
      Henle's fiber layer (HFL), a retinal layer located in the outer retina between the outer nuclear and outer plexiform layers (ONL and OPL, respectively), is composed of uniformly linear photoreceptor axons and Müller cell processes. However, in the standard optical coherence tomography (OCT) imaging, this layer is usually included in the ONL since it is difficult to perceive HFL contours on OCT images. Due to its variable reflectivity under an imaging beam, delineating the HFL contours necessitates directional OCT, which requires additional imaging. This thesis addresses this issue by introducing a shape-preserving network, FourierNet, which achieves HFL segmentation in standard OCT scans with the target performance obtained when directional OCT is available. FourierNet is a new cascaded network design that puts forward the idea of benefiting the shape prior of the HFL in the network training. This design proposes to represent the shape prior by extracting Fourier descriptors on the HFL contours and defining an additional regression task of learning these descriptors. FourierNet then formulates HFL segmentation as concurrent learning of regression and classification tasks, in which Fourier descriptors are estimated from an input image to encode the shape prior and used together with the input image to construct the HFL segmentation map. Our experiments on 1470 images of 30 OCT scans reveal that quantifying the HFL shape with Fourier descriptors and concurrently learning them with the main task of segmentation leads to significantly better results. These findings indicate the effectiveness of designing a shape-preserving network to facilitate HFL segmentation by reducing the need to perform directional OCT imaging.
      Keywords
      Cascaded neural networks
      Fourier descriptors
      Fully convolutional
      Permalink
      http://hdl.handle.net/11693/110510
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy