• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Neuroscience
      • Graduate Program in Neuroscience - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Neuroscience
      • Graduate Program in Neuroscience - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Neural underpinnings of biological motion perception under attentional load

      Thumbnail
      View / Download
      7.4 Mb
      Author(s)
      Çalışkan, Hilal Nizamoğlu
      Advisor
      Ürgen, Burcu Ayşen
      Date
      2022-06
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      125
      views
      130
      downloads
      Abstract
      Humans can detect and differentiate biological motion from non-biological motion stimuli effortlessly, even if the stimuli were shown as simplistic as a composition of moving dots (i.e. point-light displays [PLD]). Considering its survival and social significance, BM perception is assumed to occur automatically. Indeed, Thorn-ton and Vuong [1] showed that task-irrelevant BM in the periphery interfered with task performance at the fovea. However, the neural underpinnings of this bottom-up processing of BM lacks thorough examination in the field. Under selec-tive attention, BM perception is supported by a network of regions including the occipito-temporal, parietal, and premotor cortices. A retinotopy mapping study on BM showed distinct maps for its processing under and away from selective attention [2]. Based on these findings, we investigated how bottom-up percep-tion of BM would be processed under attentional load when it was shown away from the focus of attention as a task-irrelevant stimulus. Participants (N=31) underwent an fMRI study in which they performed an attentionally demand-ing visual detection task at the fovea while intact or scrambled PLDs of BM were shown at the periphery. Our results showed the main effect of attentional load in fronto-parietal regions; as well as, the main effect of peripheral stimuli in occipito-temporal cortex. Both univariate and multivariate pattern analysis results support the attentional load modulation on BM. Lastly, ROI results on each core node of BM processing network expanded these findings by showing that the attentional load modulation on both intact and scrambled BM stimuli were the strongest in bilateral occipito-temporal regions as compared to parietal and premotor cortices. In conclusion, BM was processed within the motion sensi-tive regions in the occipito-temporal cortex when shown away from the selective attention, and was modulated by attentional load.
      Keywords
      Biological motion
      Action perception
      Point-light displays
      Attentional load
      fMRI
      MVPA
      Permalink
      http://hdl.handle.net/11693/110389
      Collections
      • Graduate Program in Neuroscience - Master's degree 49
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy