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Abstract. It is shown that the discrete fractional Fourier transform
recovers the continuum fractional Fourier transform via a limiting process
whereby inner products are preserved.

§1. Discussion. A generalization of the Fourier Transform (FT), the frac-
tional FT of Namias [13], is widely used in signal-processing, optics, and quan-
tum mechanics; see Ozaktas-Mendlovic-Kutay-Zalevsky [15] for discussions
of applications and history. The discrete FT, already a valuable tool in classi-
cal number theory during the 1930's, acquired, with the advent of computers,
a tremendous range of applications throughout science and engineering; any
calculation executed by a digital machine is, by nature, discrete. Pei-Yeh [16]
introduced the discrete fractional FT. Candan [8] proved that the discrete
fractional FT is uniquely determined by its defining properties; see Candan-
Kutay-Ozaktas. [9]. The eigenvectors of the discrete fractional FT, which we
call the Harper functions, "converge" to the eigenvectors of the fractional FT,
which are the Hermite-Gaussian functions. As operators, the discrete frac-
tional FT "converges" to the fractional FT. Numerical evidence for these
"convergences" was given in [16], and a heuristic argument was given in [8]
and [9].

We have been unable to consolidate Candan's heuristic argument. Our
proof of the above "convergence" property is along different lines. The crux
of the matter is the formulation of a suitable notion of "convergence".
Actually, we feel that "convergence" is an inappropriate name, because that
which is in question is an infinite sequence whose terms and whose "limit" all
belong to different spaces. Now, an important feature of both the discrete
fractional FT and the continuum fractional FT is that they are unitary oper-
ators. This being so, we must recognize that the spaces upon which they act are
inner product spaces. The notion of induction, introduced below, is intended to
describe a discrete to continuum "limiting" process that preserves inner pro-
ducts. A more general and systematic examination of induction, together with
further examples, may be found in [6]. Some applications of the induction
property of the fractional FT are described in [7]. In this paper—in Theorems
2.5 and 2.8, respectively—we show that the Harper functions induce the Her-
mite-Gaussians, and that the discrete fractional FT induces the fractional FT.

Athanasiu-Floratos [1], Athanasiu-Floratos-Nicolis [2], Balian-Itzykson
[4] and Hakioglu [10] have studied discrete quantum systems that admit a
symmetry under the action of a suitable one-parameter group of linear canoni-
cal transforms. Independently, in the context of discrete time-frequency analy-
sis, Richman-Parks-Shenoy [19] pursued similar ideas, and in further detail.
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They showed that, just as in the continuum scenario, the actions of the linear
canonical transforms on signal space and phase space are covariant with the
Weyl-Wigner correspondence. Some extensions of their results appear in [5].
At the time of writing, it remains unclear as to whether or not there is any
general correspondence between some appropriate group of discrete linear
canonical transforms and the group of continuum linear canonical transforms
(a correspondence whereby "taking the limit as «^>co" does not just mean
taking the analogy with n replaced by GO.) It is reassuring that such a corre-
spondence does exist for the discrete and continuum fractional FT's (the con-
tinuum FT's comprise a one-parameter subgroup of the group of continuum
linear canonical transforms).

To make our results (if not all their proofs) accessible to a broad range of
scientists, we have occasionally leaned towards pedagogy. On the other hand,
no knowledge of science is needed to understand the results and their proofs.
Yet part of the fascination of the discrete fractional FT comes from a dialogue
it stimulates between mathematics and physics. In these introductory com-
ments on motivation, it would be philistine not to indicate the ways in which
Harper's Equation provides a rapport between the material in this paper and
two separate topics in quantum mechanics. Consider an integer «s= 1, let y be
a function Z—>C with period dividing «, and let EeU. Harper's Equation is

y(x - 1) + 2 cos {2nx/n)y{x) + \fr{x + 1) = (4 - 2nE/n)y{x),

where xeZ. Assume now that y/ and E are solutions to Harper's Equation.
Then y/ is a Hamiltonian eigenstate for a discrete analogue of a quantum
harmonic oscillator. To see this in a quick informal way, take n to be large,
write t, = x \/2n/n, and suppose that £, « >/n. Put

(The factor (n/2n)1/4 is just for normalization, and can be ignored for the
purpose of the present discussion.) Then Harper's Equation reduces to

Thus we have obtained an approximation to a difference analogue of the
Schrodinger equation

d2

dr2
2

r-E\G(r) =

of a harmonic oscillator. The Hamiltonian eigenstates of this harmonic oscil-
lator are the solutions O=hj, where hj is they-th Hermite-Gaussian function
R—»C (but with real values) given by

and Hj is the Hermite polynomial of degree j given by
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Here, the index j runs over the set N - {0,1, 2 , . . . } of natural numbers
together with 0. The energy eigenvalue corresponding to the eigenstate h, is
2/ + 1. In other words,

In anticipation of a comment below, we recall that the above Schrodinger
equation also has a family of "physically uninteresting" solutions which
behave as e''/2. We also mention that the time-evolution operator of the above
harmonic oscillator is a (time-dependent) scalar multiple of the fractional FT.

In Atakishiev-Suslov [3], two other discrete analogues of a harmonic oscil-
lator are examined in connection with two other discrete analogues of the
Hermite-Gaussians, namely, the Kravchuk polynomials and the Hermite q-
polynomials. It is an open question as to what relationship, if any, exists
between the Harper functions and either the Kravchuk polynomials or the
Hermite ^-polynomials.

For a Bloch electron confined to the lattice Z x Z = {(a,b): a,beZ} and
subject to a uniform transverse time-invariant magnetic field, let us impose the
Landau gauge. Then the Hamiltonian h acts on a wave function 9 such that

(h6)(a,b) = 8(a-\,b) + 9(a +l,b) + e-2*""a 0(a, b-\) + e2nima 8{a,b + 1) ,

where ft) is a real constant proportional to the magnetic flux. To obtain per-
iodic solutions, let us assume that <w is rational, and write co = m/n where m
and n are coprime integers, and « > 1. For the Schrodinger equation h9- H9,
the n2 solutions with period dividing n coincide with the solutions to

9(a, b) = e2Kikh/n <p(a)

where k is an integer, and

(p(a - 1) + (p(a + 1) + 2 cos (2n(ma + k)/n)(p(a) = Hcp(a).

This form of Harper's Equation is essentially no more general than before.
Indeed, since m is coprime to n, the change of variables a >-> ma + k'\s invertible
up to congruence modulo n, and we can put \\i{ma + k)= (p(a) and E =
«(4 — H)/2n. For a study of Bloch electrons subjected to uniform magnetic
fields see, for instance, Rammal-Bellissard [18].

Returning to purely mathematical considerations, Harper's Equation (as
an abstract system of linear equations) is the starting point for the Pei-Yeh
definition of the discrete fractional FT. The Harper functions are defined to
be precisely those solutions to Harper's Equation which commute with the
discrete FT; see Section 2. Theorem 2.5, below, may be interpreted as saying
that, for fixed FE R, and as n increases, the Harper functions with eigenvalues
at least 4 - 2nF/n induce the Hermite-Gaussians. This conclusion was perhaps
to be expected in view of the physics above, and we have already indicated the
numerical and heuristic evidence. Without Theorem 2.5, how could we be
sure that no Harper functions with high eigenvalues induce the "physically
uninteresting" solutions to the Schrodinger equation of the above harmonical
oscillator? Admittedly, this particular query can easily be resolved using
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Lemma 3.4. But how could we be sure that, for large n, there are no Harper
functions which have high eigenvalues, yet have nothing to do with the Her-
mite-Gaussians?

For an integer HS=1, let L(Z(«)) denote the space of functions y/:Z —>C
such that y/(x + «) = i//(x) for all x e Z . Let Z(w) denote the set consisting of
the integers x such that -n/2 < x «£ n/2. We define addition on Z(«) so as to
respect the usual addition in Z up to congruence modulo n. Thus, given
x, y, ze Z(«), then x + y = z provided « divides * + j> - z. (For some of our pur-
poses, it would be more elegant to replace Z(w) with the ring of modulo n
residue classes. However, for technical reasons, it will be more convenient to
work with the fixed set Z(«) of representatives of the residue classes.) We
define an inner product on L(Z(n)) by

jceZ(n)

We shall establish some connections between a continuum scenario based
on the complex Hilbert space L2(U) and discrete scenarios based on the finite-
dimensional spaces L(Z(ri)) in the limit as n—>co. Some scaling factors will be
involved, and it is convenient to define

v{n):=(n/2K)u\

The period n will not be allowed to range over all of N. We shall confine n to
an infinite subset -v c N satisfying a suitable hypothesis. Vectors in L2(U) are
to be related to some sequences of the form (\j/n:ne. i ), where each y/ne
L(Z(«)). Operators on L2(U) are to be related to some sequences of the form
(dn: ne./i ), where each an is an operator on L(Z(«)). Some technical care will
be needed, and in order that the wood not be lost for the trees, let us indicate,
in a casual way, the rough idea. Consider a vector y/e L2(IR), and for simplicity
of discussion, let us assume that y/ is rapidly decreasing. Loosely speaking, a
sequence (y/n:ns.A ) with y/nsL(Z(n)) will be deemed to be related to the
vector i// provided that we have an approximate equality

for large n and for most of the elements xeZ(n). The analogous relationship
between operators will be constructed in such a way as to respect the relation-
ship between vectors. This idea, in some form or another, has always been
used in realizations of the FT as a continuum limit of the discrete FT. In
Section 2, we express this idea in an algebraic way that will suit our purposes
here and in subsequent work. We also review the Pei-Yeh definition of the
discrete fractional FT, and we state our main results, Theorems 2.5 and 2.8.
The four theorems stated in Section 2 are proved in Section 3.

§2. Results. Recall that a smooth function <p: IR^C is said to be rapidly
decreasing provided, for all a, be N, the function [R—>IR given by r •—> | (p("\r)r''\
has an upper bound. A dense subspace of L2(U), the Schwartz space :/ (U) is
defined to be the space of rapidly-decreasing functions. It is well-known that
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the set {hj'.jeN} of Hermite-Gaussians is a complete set in .'/(R), and is an
orthonormal basis for the Hilbert space L2(U). Following Namias [13], we
define, for each teU, an operator/"1 on L2(U) given by

Namias showed that, for 0< t< 1/2 and <pe:/(M), we have

(/"V)(r) = (2it sin 2ntyxn I K,(r, q)<p(q)dq,

where the kernel is

K,(r, q) - exp {in(t - 1/4) - /(cot 2nt)(r2 + q2)/2 + ir/sm 2nt).

As observed in McBride-Kerr [11], the action of/['J on ./(R) for arbitrary ?e
R is determined by the explicit integral formula together with the condition
that/ ( ' + n =/[ '1/" '1 for all t, t'eU. The Fourier Transform/on L2(U) is the
special case

/ • _ /•[1/4]

so it makes sense to call/1'1 the fractional Fourier Transform.
The operator on ,v(R) given by <p(r) >-» (-d2 / dr2 + r2)<p(r) extends to an

operator h on L2(R), given by

for ./G IU Evidently, / [ " = exp {int(h - 1)).
Consider an integer n s* 1. For the moment, let us take n to be fixed. Recall

that the discrete Fourier Transform /„ is defined to be the operator on L(Z(n))
such that

V i yeZ(n)

where i/^eL(Z(«)) and xeZ. For each integer x, we write x* to denote the
function Z—>C such that x*(/) = 1 when y = x modn, and ;c*(y) = 0 otherwise.
The set {x*:xeZ(ri)} is an orthonormal basis for L(Z(«)). It is easily shown
that

Another easy calculation yields/^x* - (-x)*, whence/^ = 1.
Let un and i;,, be the unitary operators on L{Z(n)) such that iinx* = (x+ 1)*

and vnx* = e2n>x/nx* for xeZ. The Hermitian conjugates satisfy u\x* =
(x - 1)* and f^x* - e -2nix/"x*. We define a Hermitian operator

4 := un + uf
n + vn + vl

on L(Z(«)). Given an eigenvector a of «„ with corresponding eigenvalue
4 - 2nE/n, then CT and £ satisfy Harper's Equation

o(x - 1) + 2 cos (2nx/n)a(x) + o(x + 1) = (4 - 2nE/ri)o(x).
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REMARK 2.1. Let a be an eigenvector of sn. Then there does not exist an
integer x such that o(x) = 0 = o(x + 1).

Proof. This is immediate from the fact that a satisfies Harper's Equation.

THEOREM 2.2 (Candan [8]). Up to scalar multiplication, L(Z(n)) has a
unique basis consisting of common eigenvectors of sn andfn.

Proof. We give a brief presentation of the argument in Candan-Kutay-
Ozaktas [9, Section III.B]. By direct calculation, fnunf\ = vn and fnvnf I - ill.
Hence /„£„ = £„/„. In particular, L(Z(n)) has a basis consisting of common
eigenvectors of sn and / „ . Let L+(Z(n)) and L_(Z(n)) be the eigenspaces of the
involution/^ corresponding to the eigenvalues +1 and - 1 , respectively. The
action of §„ on L(Z(«)) must respect the decomposition

(-x)*:xeZn[0,n/2]} and {x* - ( - jc)*:xeZn(0,«/2)} are
bases for L+(Z(n)) and L_(Z(n)), respectively. With respect to these two bases,
the actions of sn on L+(Z(n)) and on £_(/(«)) are both represented by tridia-
gonal matrices whose off-diagonal entries are all non-zero. By Wilkinson [20,
Section 5.38], these two actions of sn are both separable. Therefore, up to
scalar multiplication, L+(Z(«))uL_(Z(«)) contains a unique basis of eigenvec-
tors of §„. The assertion follows because any eigenvector of /„ must belong
either to L+(Z(«)) or else to L_(Z(n)).

By Remark 2.1, Theorem 2.2, and the fact that sn is Hermitian, there exists
a unique basis Sn of L{Z(nj) consisting of real unit eigenvectors cr such that
either cr(0)>0 or else cr(O) = 0< a(l) . Since the action of §„ on L+(Z(n)) is
separable, we can enumerate the elements of S,,nL+(Z(«)) as onfi,
on,2, GnA, • • •, such that the corresponding eigenvalues are in strictly decreasing
order. Similarly, we can enumerate the elements of SnnLJZ(n)) as
Cn,i, <T/7i3, (Tn i 5, . . . , such that the corresponding eigenvalues are in strictly
decreasing order. By considering the identity n = |Zn[0,n/2] | + |Zn(0,«/2)| ,
we see that L+(Z(n)) has dimension either n/2 +1 or (n + l)/2 (whichever is an
integer); likewise L_(Z(n)) has dimension either n/2 - 1 or (n - l)/2. Thus we
have enumerated the elements ontk of Sn such that, if n is even, then the index
k is an integer satisfying 0 =£ fc =s w - 2 or k- n, while if n is odd, then k is an
integer satisfying 0^k^n-l. After Candan [8], we define, for each tsU, the
discrete fractional Fourier Transform f%] to be the operator on L(Z(n)) such
that

for each index k as above. Evidently, jVn =f{n\fl!i} for all t, fe R. Note that
/J,'1 = 1. Furthermore, /[, ' /41 has order 4. Candan observed that, by McClellen-
Parks [12], the multiplicities of 1, /, - 1 , -/' as eigenvalues of/L'/41 coincide with
the multiplicities of 1, /, - 1 , -/, respectively, as eigenvalues of /„ .
This, together with numerical evidence in Pei-Yeh [16] and Candan-Kutay-
Ozaktas [9] supports the following conjecture.
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CONJECTURE 2.A. Given an integer «s= 1, then /L'/4] =/„.

Theorems 2.6 and 2.7, below, tell us that/J,1/4] and/,, both induce/.
Consider a uniformly continuous vector q>eL2(W). As in Section 1, the

unique function R—>C representing (p is also denoted by (p. Given a vector
(p,,eL(Z(n)), we say that <p restricts to q>n, writing <pn = res,,(<p), provided that,
for all xeZ(«), we have

<p(xv(«r2) = v(n)<pn(x).

Let / be an infinite set of natural numbers such that, given m,ne. < with
«ssm, then n divides m, and the integer m/n is a square. The set

U{. i ):={xv(nY2:ne. t ,xeZ(n)}

is dense in U. Given an element <^eR( / ), we define p(<ij) to be the minimal
element of / such that ^v(p(^))2eZ(p(^)). Thus, for each ne. i with

we can write

| = t;(n)v(n)-2,

where <^(«)eZ(n). Let L(Z(. / )) denote the space of sequences of the form
(\j/n: ne i ) where each \j/neL(Z(n)). Since U(.4 ) is dense in R, each uni-
formly continuous vector \j/eL2(U) is uniquely determined by the element
(resB(yf): ne I ) of L(Z(. / )). Note that any infinite subset .4 ' of- -i satisfies
the hypothesis we imposed upon . / , and, furthermore, IR(. ' ') = R( / ).

The condition on / that each integer m/n be a square is not essential,
and can be dispensed with, but at the price of introducing some irritating
complications that would obscure our arguments. We do not know whether
our results would still hold if / were replaced with any infinite subset of N.
Anyway, the hypothesis we have imposed upon ' covers all the applications
we have in mind. As an example, we can take .A to consist of all the positive
even powers of some given integer Js=2, or we can take -f to consist of all
the positive odd powers of d. The case where d is prime pertains to the refer-
ences to discrete quantum mechanics cited in Section 1.

Consider a vector y/EL2(R), and a sequence (y/v,: ne..•> )eL(Z( 4 )). We
say that (t//,,: ne. i ) induces y/, writing i//= indwe , (yViX provided that, for all
uniformly continuous (peL2(U), we have

<<p|v>= lim <resn(<p)|yO.

By the Riesz Representation Theorem (for Hilbert spaces), each element of
L(Z(. ' )) induces at most one vector in L2(R).

LEMMA 2.3. Given uniformly continuous vectors <p, i//£ L2(R), then

(q>\ \jf) = lim (re
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Proof. Let (pn :=res«(<p) and y/n'-= resn(y/). Since (p and y/ are Riemann-
integrable,

<p(r)*y/(r)dr= lim X <?„(.*)* y/,,(x)

-1

for all real q > 0. F/a the Cauchy-Schwartz inequality, we easily obtain

lim X <P»W*V»W ^ W(r)\2dr
^"s ' xeZ(«): |x|><7V(n)2 ' J

r:\r\sq r:\r\-Jaq

The right-hand expression tends to zero as q attends to infinity.

LEMMA 2.4. Given a uniformly continuous vector y/eL2(R), then y/ =

Proof. This is immediate from Lemma 2.3.

The four theorems stated below will be proved in Section 3.

THEOREM 2.5. For each jsM, hj— indns , {onj).

THEOREM 2.6. Given a vector i//eL2(R), then there exists an element (\j/n:
ne.t )eL(Z(,/ )) such that i//=indne , (v(«))-

For ne. 4 , let End (L(Z(rc))) denote the ring of operators on L(Z(«)). The
ring

End (L(Z(. •< ))) := Xws , End (L(Z(«)))

consists of the sequences (dn:ne. A ) such that each dn e End (L(Z(n))). We say
that («„:«£./ ) induces a, writing a = indne , (dn), provided that, given any
element (y/n:ne.') )eL(Z(. t )) inducing a vector I//EL2(IR), then (dn\i/n:ne
•I ) induces ay/. The Reisz Representation Theorem, together with Theorem

2.6, ensures that each element of End (L(Z(. i ))) induces at most one operator
on L2(U).

The condition that (an: ne. i ) induces a seems to be rather strong.
Suppose, for instance, that each an is given by

dnx* = v(n)\(x - 1)* - 2x* + (x + 1)*).

In numerical calculation, dn is often used as a discrete approximation to the
second differential operator. Of course, differential operators do not have
domain L2(M), but that is not an essential problem, because we could easily
extend the definition of induction so as to be applicable to operators on a
domain dense in L2(U). Our point is that, putting y/n(x) = (-l)x«7 with yeU,
then dny/n = -Av{n)2yn, and there clearly exist y for which (y/,,: «e > ) induces
the zero-vector while (dny/n:nE. / ) does not induce any vector. As another
example, the operator hn on L(Z(n)) given by

hnx* = v(nf(-{x - 1)* + (4 - 2 cos (2nx/n)x* -(x+\ )*)
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may seem sensible as a discrete analogue of the operator h on /(IR), but there
does not exist a vector (peL2(M) such that (hnq>n:ne 4 ) induces a vector for
all ((p,,: ne. i )eL(Z( / )) inducing cp.

THEOREM 2.7. With the notation above, f— indne , (/„).

The essence of Theorem 2.7 has been known since the 1930's. We have
been unable to derive it from any results we have found in the literature, but
we suspect that it would yield to general principles of a Hilbert space approach
to spectral methods as in, for instance, Picard [17, Section 2.2].

THEOREM 2.8. For all ?e U, fw = indn£ , (/J,'1).

§3. Proofs. For each jeN and we.;' , let hnJ'•= resn(hj) and An>/:=
4-2K(2j+\)/n.

LEMMA 3.1. Given jeN, and <̂ e!R( ' ) and ne -v' with n^p(^) , then

Proof. Let x'-= §(«). Taylor's Theorem gives

Putting 8= ±v(n)~2, and using the fact that each function r >-» |/!/a)(r)| is
bounded above, we have

Similar manipulations give

(-2 + 2 cos 2nx/n)hnJ(x) = -<f v(«T%(£) + O{v(n)\

whence

(isn - knj)hnSKx) + O(n-9/4) = v(n)-5(h](S) + (-<f + 2/+ l)h^)) = 0.

Given any vector v in an inner product space, we write the modulus of v
as ||u||. In particular, for ye L2(U), we write ||y/|| := |

LEMMA 3.2. Given jeN and ne / , then \\{sn-XnJ)hnj\\ - o{n~2/2).

Proof. Let kn'.= (snXnJ)hnj. By Lemma 3.1,

I \kn(x)\2=O(nA\ogn).
.reZ(n): |jr| « v{n)2 log n
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Choose BeU such that \hJ(r)\<Brie~r2'2 for all reU. For jceZ(n) and £ =
xv(ri)~2, we have v(«)|A:n(x)|^854-/e~52/2 because |A,V|^4 and sn is a sum of
four unitary operators. So

X \kn(x)\2^64B2 I r2'e^dr.
x<=Z(n): \x\ > v(n)2 log n *

r: \r\ + 1 === log /?

The right-hand expression diminishes faster than n 4 log«, and so ||/c,,
o(«~2log«).

I =

LEMMA 3.3. Given jeN, and sufficiently large ne i , then s,, has an eigen-
value in the open interval (4 - Anj/n - In In, 4 - Anj/n - n/n).

Proof. Suppose, for a contradiction, that there exists an infinite subset
.A ' of ..4 ' such that, for each ne. i ', there is no eigenvalue of sn in the
specified interval. Since the function h, has precisely j zeros, we cannot have
\\hnJ\\ = 0 unless «=£/. So we may define gnj

:-hnj/\\hnj\ for all ne i ' with
n>j. Lemma 2.3 gives limne , \\hhJ\\ = \\hj\\ = 1, and then Lemma 3.2 tells us
that

||(iV, - {A-Anj/n - 2n/n))gnJ\\ = o(n3/2).

For each ne. 4 ' with n>j, the hypothesis on . / ' allows us to write gnJ-
an + bn, where an is a linear combination of eigenvectors of sn with associated
eigenvalues at least 4 - 4nj/n - n/n, and bn is a linear combination of eigenvec-
tors of sn with associated eigenvalues at most 4 - Anj/n - 3n/n. Using the fact
that an and bn are orthogonal, we obtain the contradiction

||(5n - (4 - AnjIn -2n/n))(an + bn)\\»n/n(\\an||
2 + \\b,,\\2) = n/n.

The next five results concern the following scenario: let Fe R, and for each
n e / , let mn be a real unit eigenvector of both sn and /„ such that the eigen-
value of §„ associated with con has the form 4 — 2nEn/n where En^F. Thus ion

satisfies Harper's Equation

mn(x - I) + cojx + I) = 2(\ - nEjn - cos 2nx/n)wn(x)

for xeZ. Since sn = un + uI + vn + v\ as a sum of four unitary operators which
do not mutually commute, we have En>0, and, in particular, F>0.

LEMMA 3.4. Let ne. 1 , and let xeZ(w) such that cos2nx/n^ 1 -nEn/n.
Ifx>0, then \(on(x)\^\(on(x-\)\. Ifx<0, then \con(x)\^\con(x+\)\.

Proof. Since (on is an eigenvector off2,, we have |ft>,,(z)| = |o),,(-z)| for all
zeZ. So, if the assertion fails, then there must exist some xeZ such that
cos2nx/n^ 1 -nEn/n and \con(x- 1)| < |«,,(x)| > \(O,,(x+ 1)|. But Harper's
Equation forces \con(x- 1) + mn(x+ l)\^2\con(x)\.

LEMMA 3.5. Given sufficiently large ne. ' , and xeZ(n), then
v(n)\con(x)\^(2F)U4.
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Proof. For each «e ' , let Mn be the maximum value of |ft)n(x)| with xe
Z. Let us fix an element ne. •' , and assume that n is sufficiently large for
our purposes. Write M := M,,, and choose ye Z(«) such that con(y) - M. Since
l<8nCv)l = l©«(-.y)l> w e m aY insist that y<0. We assume that con(y)>0; the
argument when &>„(>') <0 is similar. Since n is sufficiently large, Lemma 3.4
and the condition y < 0 ensure that

1 5= cos 2n(y + x)/n > 1 - nEjn 3s 1 - nF/n

for each integer z with 0=Sz=£ >Jn/KF. For each such z, let A(z):=
«„( v- + z) - ton(y + z - 1). We have |A(z + 1) - A(z) | s= 2nFM/n, hence |A(z) |=£
2nFMz/n and

o),,(y + z)5=M- X 2jtFMx/n = M(\ -nFz(z+X)/n)>M(\-nF{z+\f/n).
x = 0

Letting m be the largest integer such that m =£ \fnJnF, then

l = l|fi>»lf^"i ta,,(7 + 2)2>M2 £ (\-nFz2/nf

m5 m4 m3 m,ri(,. 2nF(mi m2 m\ J
- M2[ M — + — + — + (nF nf\ + +

\ n \3 2 6/ \5 2 3 30

Now letting the element «e. / vary, we have

o( sfn)) > M2,(v(n)2/
We now construct a function co , : R( ' )—>U. Let n0 be the smallest

element of ' . Given an element £e[R( / ) with p(£)s£n0, then Lemma 3.5
guarantees that the set {v{ri)(On(^{n))\ ne i } has a cluster point co , (£). Since
there are only finitely many £eR( •' ) with p(t,)^nQ, there exists an infinite
subset. ' i of. / such that «0£ ' i and

ft), ( 0 = lim (v(«)ft)w(C(«)))

for all ^eR( / ) with p(0=£«0.
Now let t^\, and assume, inductively, that we have defined . i s for all

integers ,v with 1 s=.v=£/. For each s, let ns be the smallest element of. / y. We
also assume that we have defined m , (£) for all ^e IR(. •( ) with p(Q ^ n, _ i. As
before, there exists an infinite subset -/ /+ i of. i, such that nt<£.A , + , , and the
real number

co, ( 0 = lim (v(«)Q)B(C(n)))

is a cluster point of {v(«)o>,,(£(«)): ne. ' ,} for all £eR(. * ) with
Letting . ' * := {n,: /e . ' }, then

(0,(0= l i

for all Ce R(. ' ).
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LEMMA 3.6. Given TJGIR(.A ) with 7]23=4F, then co , (T])2=s4F/|r]|3.

Proof. Given real r>0, and ne. / , let Qn(r):=XxeZft'n(x)2 and
^«W:=Ix ez-w"(x)2 ' w h e r e Z:={xGZ(«):|jc|«rv(«)2} and *Z':= {xeZ(«):
|x|>rv(«)2}. Then

Qn(r) + Q'n(r) = \\(On\\
2=l.

Now £„ = un + u\ + vn + vf
n as a sum of four unitary operators, so

4 -2nF/n^{con\sn\con) = {con\un + ul\con) + {con\vn + vl\con)

and both of the terms of the sum have absolute value at most 2. Therefore

U.'n{r) cos 2nrv(nf/n = 1 - D.'n{r)nr2/n + O(n~2).

We deduce that Q^(r) < F/r2 + O(l/«). We may assume that r\ > 0. Let «e •*
be such that n^p{r\). Writing y := T](«), then

cos Ttj/n + O(ri2) < 1 - nrj2/4n =s 1 - nEn/n.

By Lemma 3.4, |fl)n(x)| is monotonically decreasing in the range # e Z n [ j /
2,>>]. Recalling that «n(x)2 - con(-x)2, and summing ww(x)2 over the integers
xe[-y,-y/2]v[y/2,y], we obtain cor,(y)2(y+ O(l))^Q.'n(ri/2). Lemma 3.5
implies that con{yf = O(n~{/2), so that

(on(yfr\v(n)2 + O(n]/2) < 4F/rj2.

The assertion now follows from the construction of co , .

We allow R(.J") to inherit the subspace topology from R.

LEMMA 3.7. The function co , : U{ / ~)—>R is continuous.

Proof. Let %,T]eR(.J ) with ^ 7 7 . We shall calculate an upper bound
for co, (^)-co, (T]). Let ne / , and assume that n is large; in particular,
p(^)^«^p(rj). Let x:= ̂ («) and _y := T](n). The eigenvalue /„ of/« associated
with con is a 4th root of unity, and

in(con(x) - con(y))= (fncon)(x)-(fncon)(y)

= "7= I fi>(,(z)(«r2jti"/"-e2*<1''"/'1)

I con(z)e"'(x+y)z/"smn(x-y)z/n.

Therefore

v(n)2\con(x) - con(y)| =
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LetteR( / ) be such that T>2s/F. Insisting that n^p{x), let f-= x(n). Let
Z~ {xeZ: |x|=s/}, and Z':=Z(«)-Z. Bearing in mind that n is large, the
proof of Lemma 3.6 shows that

= v(nf

where Z E Z ' and £:=zv(«)~2. Therefore

I \can(z) sin 7t(x-y)z/n\<2v(n)2 V5F £ z"3/2

: E Z ' Z = /+1

= 12v(n)

On the other hand, via Lemma 3.5,

v(n)
\K(X~y)z/n+O(n-3/2)\

Therefore,

hence
12

I©,

0{\/n),

L E M M A 3.8. The function co , : IR(.-'")—>IR extends uniquely to a real-
valued continuous function (o: IR—^C. Furthermore, ft) « a uniformly continuous
function in L2(R), and \\oa\\ = 1.

Proo/. The first part is immediate from Lemma 3.7. By Lemmas 3.5 and
3.6, the function r ̂  \co(r)\ is bounded by both (2F)1/4 and O(|r|"3/2). So co is
uniformly continuous.

To prove the last part, we may assume that i" = ..1'•"*. Let telR(. 4) with
TS= V4F. Lemma 3.6 gives co(r)2 =£4F/ |r|3 whenever H ^ T . In particular,

lim co(r)2dr = 0.



294 L. BARKER

The proof of Lemma 3.6 shows that

lim lim £ con(xf = 0.
T-><*> n e i xeX(n): |A'| > TV(n)2

Let us now fix T. Since each \\con\\ = 1, it suffices to show that

co(r)2dr = lim X (on(x)2,

where Z •= {xeZ(n): | X | ^ T V ( « ) 2 } . Choose any real e > 0 . The proof of Lemma
3.7 shows that, given sufficiently large ne. ' , then for all §, |'elR(. / ) with

- ^'| < 6 we have

\ < e/2.

For each £e R(. f ) n [—T, T], we have

for sufficiently large n. So, for each such £, there exists some neighbourhood
[/(£) of ^ in [-T, T] such that, for all re U(Q, we have

\co(rf-co(O2\<£

and, furthermore, given sufficiently large n, then for all <jjeR( ' )nC/(Q with
«, we have

Let {t/(^a): aeA(e)} be a finite subcover of [-T, T], and write [-T, T] =
Uae^(e) V(e, a), as a disjoint union, where each V(e, a) is a connected subset
of U(^a)- We have a Lebesgue integral

e->0

where ji denotes the Borel measure. Since there are O{ v«) elements x of Jin)
satisfying [x| ^ TV(«)2, we have

for sufficiently large n.

LEMMA 3.9. Given je N, and sufficiently large ne. I , then sn has a unique
eigenvalue in the closed interval [4 — An(J+ l)/«, 4 — Anj/ri\.

Proof. Thanks to Lemma 3.3, it suffices to derive a contradiction from
the assumption that, for infinitely many ne i , there exist two orthogonal real
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unit eigenvectors a>', and ft)'' of sn whose associated eigenvalues lie in the speci-
fied interval. We replace / with the set of such n. For each ns -t , we put
either a>,, = (o'n or else con = co", insisting that ((on\hnJ)^3/4 for sufficiently
large n. By Lemma 3.2, lim,,e , {(t>n\hnJ)

2 = 0 for all j'eN with j'*j.
Since {/*,-: ye 1̂ } is an orthonormal basis for L2(W), we have ^ksN((o\hk)

2 = 1.
The desired contradiction will be achieved when we have shown that

{(o\hk)= lim {oan\hn<k).

The argument is similar to the proof of Lemma 3.8; we shall outline the steps.
Using Lemma 3.6, and the fact that ht is rapidly decreasing, it is easy to

reduce to the task of proving that

(o(r)hk(r)dr = lim X (On(x)hnJ(x),

where T and Z are as in the proof of Lemma 3.8. For each £e R( / )n[-T, T],
we choose a neighbourhood £/'(£) of £ such that, for all re U'(Q, we have

and furthermore, given sufficiently large ne. / , then, for all ^eU(. i
with p(^)ss«, we have

\v(n)2(ot,^(n))hf,A^(n)) - eo(Qhk(0\ < £•

Choosing a finite subcover {U'(C,'a): asA'(e)}, and writing [-T, T] =
Uae/i'iE) V'(£, «) just as before, we have

X con{x)hn,k{x).

Again, the assertion follows by letting « ^ o o and then letting e—>0.

Proof of Theorem 2.5. For each «e. / , let us enumerate the elements
o'nfl, O"«,H •• •, c',,,,-! of the basis Sn such that the associated eigenvalues
A,',,o, AJ,.i,..., K,.n-1 are in decreasing order (perhaps not strictly). Lemmas 3.3
and 3.9 imply that, given any jeN, then for sufficiently large n e J , we have

4 - Anj/n - 3n/n < X'nj < 4 - Anj/n - n/n.

Lemma 3.9 also implies that, for such given j and chosen n, we may write
hnj — an_i + C,,J<J',,J + p,,j, where cn,yeC, and anj is a linear combination of
eigenvectors of .v,, with associated eigenvalues at least 4 -4-nj/n, and /3ny is a
linear combination of eigenvectors of sn with associated eigenvalues at most
4-4n(j+ \)/n. We saw in the proof of Lemma 3.3 that ||AnJ||->l as n
increases, so that Lemma 3.2 gives limne , \anJ\\ = limKe , ||j3«,y|| = O, and
limne , \cnJ\ ~ 1. But hnJ and a'nJ both have real coordinates with respect to
the bases \x*:xeZ(n)} of L(Z(n)); furthermore, if y is even, then hnj(0)>0,
while if j is odd, then hnJ(Q) = 0 < hnJ{\). Therefore lim«s , cnJ - 1. For fixed
jeN and sufficiently large ne. ' , we have shown that o'nJ= onJ. It follows
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that, when n is sufficiently large, onJ = (hnJ- anJ-/?„,,-)/cn.,-. Given any uni-
formly continuous <peL2(R), Lemma 2.3 now gives

lim (resn((p)|cTnJ> - lim <res«((p)|/i«,/> = ((p\h,).

Proof of Theorem 2.6. The proof of Theorem 2.5 shows that

lim {hnJonM) - 8iM

for all j,keM. Write y/ = £ N Cjh} with each c,-eC. For each ne. i , letj ,
Vn'-= ^j = o

cjanj- Let ./~(R) denote the subspace of .v(R) consisting of the
linear combinations 6 = ^j^Ndjhj with only finitely many of the d, non-zero.
For each such 8, we have

The assertion follows because /~(M) is dense in the space of uniformly continu-
ous functions in L2(U).

Proof of Theorem 2.7. This is similar to the proof of Theorem 2.8 below.

Proof of Theorem 2.8. Let (p, i//eL2((R) be such that <p is uniformly con-
tinuous. Let ( I / / H :«G / ')eL(Z(. ' )) be such that i//= ind,,e , {y,,). Let teU,
and write g '--fl']- For each ne. i , write gw ̂ /J,'1. We are to prove that

Since ./~(IR) is dense in L2(U), we may assume that y/e. / (1R). In fact, we may
assume that (p = h, for somey'e N. Write y^= ~ZkeN ckhk. For each ne i , write
Wn = ^Lk

cn,kGn,k> where the index k runs over the range specified in Section 2.
Now

cj = {hj\ii/) = lim (hnJ\\i/n) ~ lim cnJ.

Putting e-=e2l"Jl, then <^\gy/) = ec, - lim,,e , ec,ul• = lim,,e , (/z,,,,^,,^,,).
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