Now showing items 1-1 of 1

    • Linear inequalities among graph invariants: using graPHedron to uncover optimal relationships 

      Christophe, J.; Dewez, S.; Doignon, J-P.; Fasbender, G.; Grégoire, P.; Huygens, D.; Labbé, M.; Elloumi, S.; Mélot, H.; Yaman, H. (John Wiley & Sons, 2008)
      Optimality of a linear inequality in finitely many graph invariants is defined through a geometric approach. For a fixed number of graph vertices, consider all the tuples of values taken by the invariants on a selected ...