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1. Introduction

Consider the one-dimensional ferromagnetic Ising model with long range

interaction:

H0(φ) = −
∑

x,y∈Z1;x>y

U(x − y)φ(x)φ(y) (1)

where spin variables φ(x) associated with the one-dimensional lattice sites x take

values −1 and +1 and the pair potential U(x − y) = (x − y)
−γ

, 1 < γ ≤ 2. The

condition γ > 1 is necessary for the existence of the thermodynamical limit. We

are focused on the case γ ≤ 2, otherwise
∑

x∈Z1,x>0 xU(x) < ∞ and the model (1)

has a unique Gibbs state.1–3

The low temperature phase diagram of the the model (1) was investigated in

Refs. 4 and 5 for 1 < γ < 2 and in Ref. 6 for the borderline case γ = 2: at all

sufficiently large values of the inverse temperature, there exist at least two extremal

Gibbs states P+ and P− corresponding to the ground states φ = +1 and φ = −1.

This delicate result is closely related to the phenomenon of the “surface tension” in

one dimension. Other profound advances including results on the relation between

Fortuin-Kasteleyn percolation and magnetization were obtained in borderline case

γ = 27,8 (for the detailed approach to the random cluster models see Refs. 9 and

10). An alternative approach to the investigation of phase diagrams of ferromagnetic
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systems based on detailed exploration of spin configurations geometry was given in

Ref. 11 (for 1.5 ≤ γ ≤ 2).

In this paper we investigate the phase diagram of the model (1) under additional

external field:

H(φ) = H0(φ) +
∑

x∈Z1

hxφ(x) (2)

Let VN be an interval with the center at the origin and with the length of 2N .

The set of all configurations φ(VN ) we denote by Φ(N). The concatenation of the

configurations φ(VN ) and φi(Z1 −VN ) we denote by χ: χ(x) = φ(x), if x ∈ VN and

χ(x) = φi(x), if x ∈ Z1 − VN . Define

HN (φ|φi) =
∑

B⊂Z1:B∩VN 6=∅

U(χ(B))

The finite-volume Gibbs distribution corresponding to the boundary conditions

φi is

Pi
N (φ|φi) =

exp(−βHN (φ|φi))

Ξ(N, φi)

where β is the inverse temperature and the partition function Ξ(N, φi) =
∑

φ∈VN
exp(−βHN (φ|φi)). A probability measure P on the configuration space

{−1, 1}Z
1

is called an infinite-volume Gibbs state if for each N

P(φ(VN ) = ϕ(VN )|φ(Z1 − VN ) = φi(Z1 − VN )) = Pi
N (ϕ|φi)

for P almost all φi in {−1, 1}Z
1

.

Below we investigate the set of all infinite-volume Gibbs states of the model (2).

As a matter of course, the sufficiently strong external field exterminates the long-

range interaction and the dependence on the boundary conditions disappears when

N goes to infinity:

Theorem 1. At any fixed value of the inverse temperature β there exists a con-

stant h0 such that for all realizations of the external field {hx, x ∈ Z1} satisfying

|hx| > h0, x ∈ Z1 the model (2) has a unique infinite-volume Gibbs state.

The rigorous proof of this natural result follows from the following Theorem 2,

treating a more general case which applies to a much wider class of interaction

potentials. Consider a model on Z1 with the formal Hamiltonian

H0(φ) =
∑

B⊂Z1

U(φ(B)) (3)

where the spin variables φ(x) ∈ Φ, Φ is a finite subset of the real line R,

φ(B) denotes the restriction of the configuration φ to the set B, the potential

U(φ(B)) is not necessarily translationally invariant. On the potential U(φ(B))

we impose a natural condition, necessary for the existence of the thermodynamic
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limit:
∑

B⊂Z1:x∈B |U(φ(B))| < C0, where the constant C0 does not depend on x and

the configuration φ. Consider a model with the Hamiltonian

H(φ) = H0(φ) +
∑

x∈Z1

hxφ(x) (4)

where {hx, x ∈ Z1} is a random external field.

Theorem 2.12 For any model (3 ) and any fixed value of the inverse temperature β

there exists a constant h0 such that for all realizations of the external field {hx, x ∈

Z1} satisfying |hx| > h0, x ∈ Z1 the model (4 ) has a unique infinite-volume Gibbs

state.

The model (2) has also a unique limiting Gibbs state when the value of the

external field is small but the field is “very ordered”: Consider a model (2) with

periodic external field constituted by alternating (+) and (−) blocks:

H(φ) = −
∑

x,y∈Z1;x>y

U(x − y)φ(x)φ(y) +
∑

x∈Z1

hr
xφ(x) (5)

where hr
x is a periodic function of period 2r: hr

x = hx+2rk for all integer values of k

and for some fixed positive ε

hr
x =

{

+ε if x = 1, . . . , r

−ε x = r + 1, . . . , 2r

Theorem 3.13 Let ε be an arbitrary positive fixed number not exceeding some con-

stant h1. There exist natural numbers R1 = R1(ε) and R2 = R2(ε) such that at all

sufficiently small temperatures the model (5 ) has at least two limiting Gibbs states

for all r ≤ R1 and a unique infinite-volume Gibbs state for all r > R2.

Most likely the values of R1 and R2 coincide, but the proof of this statement is

unknown. For given ε, the value of R2 is chosen to be sufficiently large in order to

provide the reduction of the influence of alternatively oriented neighbor blocks on

the given block: the value of R2 is greater than Nε(M +1), where 2
∑∞

i=Nε+1 i−γ < ε

and M = max(N1, (8/(2 − γ)ε)
1

γ−1 ).

If the values of the external field at all lattice points are aligned, then the infinite-

volume Gibbs state is unique14,15 at all values of the temperature. This result follows

from the ferromagnetic nature of interaction and uses Fortuin-Ginibre-Kasteleyn or

Griffiths–Hurst–Sherman inequalities.

In this paper we investigate the model (2) under small and sparse external biased

field with changing signs. Let hL
x be a periodic function of period 3L: for all integer

values of k and n

hL
x =











ε if x = 3kL or x = (3k + 1)L

−ε if x = (3k + 2)L

0 x 6= nL

where L is a positive constant and 0 < ε < U(1).
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Consider a model with the following Hamiltonian:

H(φ) = H0(φ) +
∑

x∈Z1

hL
xφ(x) (6)

Theorem 4. For any values of the positive constants ε and L at sufficiently small

values of the temperature, the model (6 ) has a unique infinite-volume Gibbs state.

Since the additional nonsymmetric external field hL
x breaks the symmetry be-

tween (+) and (−) phases and leads to a unique ground state (unique zero tem-

perature phase), the statement of Theorem 4 is physically to be expected. But in

general the uniqueness of zero temperature phase can not guarantee the unique-

ness at nonzero temperatures16 and the proof of Theorem 4 requires comparison of

infinite-volume Gibbs states corresponding to different boundary conditions.

2. Proof of Theorem 4

In order to prove the uniqueness of Gibbs states, we use the method employing

the close relationship between phase transitions and percolation in models with a

unique ground state.17 The method uses the idea of “coupling” of two independent

partition functions and is based on the method used in Ref. 18. Similar “coupling”

arguments are also at the center of the disagreement percolation approach to Gibbs

states uniqueness problem.19,20

Let P1 and P2 be two extreme limiting Gibbs states corresponding to the fixed

boundary conditions φ1 and φ2. Since P1 and P2 are singular with respect to each

other or coincide,21,22 in order to prove the uniqueness of the limiting Gibbs states

of (6) we establish non-singularity of P1 and P2.

If the expression |HN (φ|φi)| expressing the energy of the configuration φ(VN )

at fixed boundary conditions φi(Z1 − VN ) is bounded uniformly with respect to

N , φ and φi then the non-singularity of P1 and P2 directly follows. This simple

idea was firstly used in Ref. 3 for the proof of the absence of phase transition in

one-dimensional models with long range interaction. But in our case |HN (φ|φi)| is

not bounded and a more sophisticated approach is required.

Let φmin
N be the configuration with minimal energy at fixed N and boundary

conditions φ̄:

min
φ∈Φ(N)

HN (φ|φ̄) = HN (φmin,i
N |φ̄)

HN (φ|φi, φmin
N ) denotes the relative energy of a configuration φ (with respect to

φmin
N ):

HN (φ|φi, φmin
N ) = HN (φ|φi) − HN (φmin

N |φi) .

Let Pi
N be Gibbs distributions on Φ(N) corresponding to the boundary con-

ditions φi, i = 1, 2 defined by the use of relative energies of configurations. Take

M < N and let Pi
N (φ′(VM ) be the probability of the event that the restriction of

the configuration φ(VN ) to VM coincides with φ′(VM ). Based on the uniqueness of
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φmin
N we construct the contour model common for boundary conditions φi, i = 1, 2

and by using of a well-known trick23 we come to “noninteracting” clusters from

interacting contours (a cluster is a collection of contours connected by interaction

bonds).

The cornerstone of the method is the estimation of the dependence of the ex-

pression P1
N (φ(VM ))/P2

N (φ(VM )) on the boundary conditions φ1 and φ2 in terms

of the sum of statistical weights of clusters connecting the cube VM with the bound-

ary. At low temperatures, the application of this theory to one-dimensional models

produces a uniqueness criterion17 which is formulated below as Theorem 5.

A configuration φgr is said to be a ground state of the model (2), if for any

finite set A ⊂ Z1 H(φ′)−H(φgr) ≥ 0, where φ′ is a perturbation of φgr on the set

A. We say that the ground state φgr satisfies the Peierls stability condition with a

positive constant τ if for any finite set A ⊂ Z1 H(φ′) − H(φgr) ≥ τ |A|, where |A|

denotes the number of sites of A and φ′ is a perturbation of φgr on the set A.

Condition 1. The model has a unique ground state satisfying the Peierls stability

condition.

Condition 2. A constant α < 1 exists such that for any number L and any interval

I = [a, b] with the length n and for any configuration φ(I)

∑

B⊂Z1;B∩I 6=∅,B∩(Z1−[a−L,b+L])6=∅

|U(B)| ≤ const nαLα−1 .

The Condition 2 is very natural and obviously is held for a pair potential U(x−y) =

(x − y)−γ (1 < γ ≤ 2) of the model (6).

Theorem 5.17 Suppose that a one-dimensional model with a finite spin space and

with the translationally-invariant Hamiltonian

H(φ) =
∑

B⊂Z1

U(φ(B))

where
∑

B⊂Z1;x∈B |U(B)| < const, satisfies the Conditions 1 and 2. Then a value

of the inverse temperature β1 exists such that if β > β1 then the model has a unique

limiting Gibbs state.

We can treat the model (6) as a translationally invariant model: if we partition

the lattice into disjoint intervals [3kL, 3(k + 1)L − 1] and replace the spin space

{1,−1} by {1,−1}[0,3L−1] including 23L elements, then the model from translation-

ally periodic with period L transfers to translationally invariant model. Thus, for

employing of Theorem 5 we have to control the validity of Condition 1.

Lemma 1. The constant configuration φ+ = +1 is a ground state of the model (6)

and this configuration satisfies the Peierls stability condition.
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Proof. Let φ′ be a perturbation of φ+ on the finite set A. A point x ∈ Z1 is said to

be non regular if φ(x) = −1. Two non regular point are connected if all points be-

tween them are non regular. The connected components of all non regular points we

call contours. All nonzero interaction terms U(x−y)(1−φ(x)φ(y)) of H(φ′)−H(φ+)

are nonnegative. We take into account only terms U(1)(1− φ(x)φ(y)) representing

interaction between neighboring spins, terms hL
x (φ(x)−φ+(x)) and ignore all other

positive interaction terms. Suppose that the set A includes n contours K1, . . . , Kn.

Then

H(φ′) − H(φ+) ≥

n
∑

i=1





∑

x or y∈Ki

U(1)(1 − φ(x)φ(y)) +
∑

x∈Ki

2hL
x





≡

n
∑

i=1

∆(Ki) .

Now we note if Ki contains ni sites with hx = −ε, then ∆(Ki) includes exactly

two 2U(1) terms and at least 2(ni − 1) terms 2ε and the length of Ki is at most

3Lni. Consequently,
∑

x or y∈Ki

U(1)(1 − φ(x)φ(y)) +
∑

x∈Ki

2hL
x ≥ 2U(1) − 2ε + 2ε(ni − 1)

and the inequality H(φ′) − H(φgr) ≥ τ |A| holds with

τ = min

{

2U(1) − 2ε

3L
,

2ε

3L

}

Lemma 1 is proved.

Lemma 2. The configuration φ+ = +1 is a unique ground state of the model (6 ).

Proof. Let φgr be a ground state of the model (6) and φgr = φ+. We divide the

proof into four cases.

Case 1. The total number of sites with φgr(x) = −1 is finite. We get contradiction

with Lemma 1, since now φgr can be treated as a finite perturbation of φ+.

Case 2. The total number of sites with φgr(x) = +1 is finite. For each natural n

we can find an interval Ik,n = [3kL, (3(k + n) + 2)L] such that k is an integer and

φgr(x) = −1 for each x ∈ Ik,n. Consider a finite perturbation φ′ of φgr on A = Ik,n.

Then for sufficiently large values of n

H(φ′) − H(φgr) ≥ 2ε(n + 1) − 2
∑

x∈In,y 6∈In

|x − y|U(|x − y|) > 0

since
∑

x∈Ik,n,y 6∈Ik,n
|x − y|U(|x − y|) =

∑

x∈Ik,n,y 6∈Ik,n
|x − y|1+γ) ≤ const ·

((3n + 2)L)
2−γ

and 2 − γ < 1.
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Case 3. The total number of sites with φgr(x) = +1 and φgr(x) = −1 is infinite

and there is a finite interval [−M, M ] such that both configurations φgr(−∞,−M)

and φgr(M,∞) are constant configurations. Without loss of generality, suppose

that φgr(x) = −1 for each x ∈ (−∞,−M). Then for arbitrary natural n, there

exists a natural number k such that the interval Ik,n = [−3kL, (3(k + n) + 2)L] is

a subset of (−∞,−M). Consider a finite perturbation φ′ of φgr on A = Ik,n. Then

for sufficiently large values of n

H(φ′) − H(φgr) ≥ 2ε(n + 1) − 2
∑

x∈Ik,n,y 6∈Ik,n

|x − y|U(|x − y|) > 0

since
∑

x∈Ik,n,y 6∈Ik,n
|x − y|U(|x − y|) =

∑

x∈Ik,y 6∈Ik,n
|x − y|1+γ) ≤ const ·

((3n + 2)L)
2−γ

and 2 − γ < 1.

Case 4. The total number of sites with φgr(x) = +1 and φgr(x) = −1 is infinite

and for each natural number n there exists an interval In = [an, bn] such that

φgr(an) = φgr(bn) = 1 and the number of sites x in In with φgr(x) = −1 is at least

n. Consider a finite perturbation φ′ of φgr on A, where A is the set of all sites in

In with φgr(x) = −1. Then by Lemma 1

H(φ′) − H(φgr) ≥ τn −
∑

x∈A,y 6∈In

|x − y|U(|x − y|) ≥ τn − |A|2−γ

= τn − const · |n|2−γ > 0

for sufficiently large values of n.

Lemma 2 is proved.

Lemmas 1 and 2 provide that the model (6) satisfies the Condition 1 and The-

orem 4 follows from Theorem 5.

3. Concluding Remarks

Theorem 4 has a straightforward generalization to any external field under which

the model (2) has a unique ground state satisfying the Peierls stability condition.

We expect that Theorem 4 holds for all periodic external fields with period L

satisfying
∑L−1

x=0 hx 6= 0. Let us define a configuration ϕh by ϕh(x) = sign(hx). The

ground state of the model (2) revealing as a result of ferromagnetical “struggle”

between spins of ϕh for some realizations of the external field is not unique or does

not satisfy the Peierls condition and we can not prove Theorem 4 by applying the

results of Ref. 17. We think that in these extreme cases some technical modifications

of methods of Ref. 17 will lead to the proof of Theorem 4.

The ferromagnetical nature of interaction is not essential for the methods of the

present paper and was used only for description of ground states.

The Peierls condition is essential for the absence of phase transitions (the fact

that a one-dimensional model with translationally-invariant long-range interaction
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has a unique ground state can not guarantee the uniqueness of infinite-volume Gibbs

states16).
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9. H.-O. Georgii, O. Häggström and C. Maes, Phase Transitions and Critical Phenom-

ena, Vol. 18 (Academic Press, 2001), p. 1.
10. G. Grimmett, The Random Cluster Model (Springer, Berlin, Heidelberg, Germany,

2006).
11. M. Cassandro, P. A. Ferrari, I. Merola and E. Presutti, J. Math. Phys. 46, 053305

(2005).
12. A. Kerimov, Int. J. Mod Phys. B 17, 5781 (2003).
13. A. Kerimov, J. Phys. A 40, 10407 (2007).
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