Koç, AhmetKhan, RehanTuncel, Dönüş2019-02-212019-02-2120180947-6539 (print)1521-3765 (online)http://hdl.handle.net/11693/49840The design, synthesis, and characterization of a new multifunctional supramolecular assembly based on a photoactive glycosylated porphyrin and covalently attached monofunctionalized cucurbit[7]uril (CB7) are reported. To obtain the target supramolecular assembly, azido-functionalized tetraphenylporphyrin (TPP) was used as a building block. TPP was first glycosylated by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, then a monopropargyloxy-functionalized-CB7 unit was conjugated to glycosylated TPP with a second CuAAC reaction. The host-guest chemistry of the assembly was investigated by 1H NMR experiments to establish the availability of the CB7 as a host. The imidazole-based guest, which is known to have high affinity toward CB7, was observed to form inclusion complex with CB7. It was also demonstrated that this supramolecular assembly can serve as an efficient photosensitizer for the generation of singlet oxygen.EnglishDrug deliveryPhotosensitizersPorphyrinoidsSinglet oxygenSupramolecular chemistry“Clicked” Porphyrin-cucurbituril conjugate: a new multifunctional supramolecular assembly based on triglycosylated porphyrin and Monopropargyloxycucurbit[7]urilArticle10.1002/chem.201804024