Yau, Arma Musa2022-08-182022-08-182022-082022-082022-08-16http://hdl.handle.net/11693/110455Cataloged from PDF version of article.Thesis (Master's): Bilkent University, Graduate Program in Materials Science and Nanotechnology, İhsan Doğramacı Bilkent University, 2022.Includes bibliographical references (leaves 59-68).The intrinsic porosity and tunable morphology of Porous Organic Polymers (POPs), materials made from organic building blocks joined by strong covalent bonds, have become appealing in the context of electrochemical applications. In the first section of this thesis, a low-cost thiophene derivative and melamine were assembled into nitrogen and sulfur-enriched microporous organic polymer (MOP) using a pyrolysis-free one-pot Schiff-base type polycondensation reaction. The synthesized polymer is characterized by FT-IR, SEM, TEM, BET, XRD, XPS, TGA and UV-VIS. With 195.731 m2 g–1 surface area and 0.047 cm3 g–1 pore volume, the as-synthesized MOP has a cotton-like morphology and a micropore-dominated pore size distribution. After encapsulating it with a nickel co-catalyst, we showed that the obtained framework (MOP) could be used as an efficient catalyst for hydrogen evolution reaction (HER) in an alkaline electrolyte with the optimum composite (Ni2@MOP) exhibiting a remarkable onset overpotential of -66 mV. Furthermore, the optimum electrocatalyst showed good stability, delivering 90.84% faradaic efficiency (FE) after a 3.5 h chronoamperometry experiment. In the second section, the synthesized porous organic polymer and CB[6]-porphyrin covalent organic framework were investigated for potential use as electrode materials for supercapacitors.xiv, 70 leaves : illustrations, charts ; 30 cm.Englishinfo:eu-repo/semantics/openAccessMicroporous Organic Polymers (MOP)MelamineNickelElectrocatalytic hydrogen generationWater splittingSupercapacitorPorous organic polymers for electrochemical and energy storage applicationElektrokimya ve enerji depolama uygulaması için gözenekli organik polimerlerThesisB161172