Akcalı, İbrahim2016-01-082016-01-082013http://hdl.handle.net/11693/17103Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 54-57.For nonradiative energy transfer (NRET) in the field of medicine and biology as well as optoelectronics, recent advances in the fluorophores, and optical techniques and devices have led to greatly increased interest in applications employing NRET in the past decade. Replacing traditional fluorophores, colloidal quantum dots have flourished the fluorescence properties of NRETbased applications. This has also given rise to working with narrower tunable emission at a higher quantum yield with broadband absorption, and easier handling and fabrication compared to those of traditional fluorophores. A newly discovered technique, QD incorporation into macrocrystals of various salts, has enhanced the processability, photostability and robustness of these colloidal QDs. To benefit from these enhanced properties for NRET, this thesis proposed and studied macrocrystals for exciton transfer via NRET and fabricated those considering NRET mechanism. The design of these QD-embedded macrocrystal structures has enabled strong energy transfer. The experimentally measured energy transfer reached ~51%, which was obtained with careful optimization. Moreover, these hybrid structures have allowed for the observation of the QD distribution dependence of the transfer efficiency for the QDs wrapped inside macrocrystals. The steady state and time-resolved measurements in this thesis revealed that QD-incorporated macrocrystals can possibly take place of QDs in various NRET-related applications.xıı, 57 leaves, illustrations, graphsEnglishinfo:eu-repo/semantics/openAccessExciton transfernonradiative energy transferquantum dot embedded macrocrystalsQC611.8.N33 A43 2013Nanocrystals--Optical properties.Quantum dots.Exciton theory.Energy transfer.Exciton transfering macrocrystals of colloidal quantum dotsThesis