Özen, A. C.Bock, M.Atalar, Ergin2016-02-082016-02-0820150968-5243http://hdl.handle.net/11693/25591Objective: Implementation of a decoupling method for isolation of transmit and receive radio frequency (RF) coils for concurrent excitation and acquisition (CEA) MRI in samples with ultra-short T2*. Materials and methods: The new phase and amplitude (PA) decoupling method is implemented in a clinical 3T-MRI system equipped with a parallel transmit array system. For RF excitation, two transmit coils are used in combination with a single receive coil. The transmit coil is geometrically decoupled from the receive coil, and the remaining B1-induced voltages in the receive coil during CEA are minimized by the second transmit coil using a careful adjustment of the phase and amplitude settings in this coil. Isolation of the decoupling scheme and transmit noise behavior are analyzed for different loading conditions, and a CEA MRI experiment is performed in a rubber phantom with sub-millisecond T2* and in an ex vivo animal. Results: Geometrical (20 dB) and PA decoupling (50 dB) provided a total isolation of 70 dB between the transmit and receive coils. Integration of a low-noise RF amplifier was necessary to minimize RF transmit noise. CEA MR images could be reconstructed from a rubber phantom and an ex vivo animal. Conclusion: CEA MRI can be implemented in clinical MRI systems using active decoupling with parallel transmit array capabilities with minor hardware modifications.EnglishConcurrent excitation and acquisitionContinuous-wave NMRGeometrical decouplingPhase amplitude decouplingTransmit arrayActive decoupling of RF coils using a transmit array systemArticle10.1007/s10334-015-0497-0