Arıkan, Erdal2016-02-082016-02-082003-06-07http://hdl.handle.net/11693/27521Date of Conference: 29 June-4 July 2003Conference name: IEEE International Symposium on Information Theory, 2003. Proceedings.Grover discovered a quantum algorithm for identifying a target element in an unstructured search universe of N items in approximately 1r/4VN queries to a quantum oracle. For classical search using a classical oracle, the search complexity is of order N /2 queries since on average half of the items must be searched. In work preceding Grover's, Bennett et al. had shown that no quantum algorithm can solve the search problem in fewer than D(VN) queries. Thus, Grover's algorithm has optimal order of complexity. Here, we present an informationtheoretic analysis of Grover's algorithm and show that the square-root speed-up by Grover's algorithm is the best possible by any algorithm using the same quantum oracle.EnglishGrover's algorithmQuantum searchEntropyInformation analysisAlgorithm design and analysisQuantum computingPhysics computingPerformance gainComputer errorsError correctionTime measurementUpper boundAn information-theoretic analysis of Grover's algorithmConference Paper10.1109/ISIT.2003.1228418