Ergun, A. S.Temelkuran, B.Özbay, EkmelAtalar, Abdullah2016-02-082016-02-0820010885-3010http://hdl.handle.net/11693/24843Capacitive micromachine ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They consist of many small circular membranes that are connected in parallel. In this work, we report a new detection method for cMUTs. We model the membranes as capacitors and the interconnections between the membranes as inductors. This kind of LC network is called an artificial transmission line. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the frequency of the signal through it. By measuring the electrical length of the artificial line at a high RF frequency (in the gigahertz range), the vibrations of the membranes can be detected in a very sensitive manner. For the devices we measured, we calculated the minimum detectable displacement to be in the order of 10 -5 Å/√Hz with a possible improvement to 10 -7 Å/√Hz.EnglishCapacitive micromachined ultrasonic transducersElectrical lengthUltrasound frequencyCapacitanceCapacitorsDemodulationElectric inductorsElectric variables measurementElectrodesMathematical modelsSignal detectionUltrasonicsVibrations (mechanical)Ultrasonic transducersA new detection method for capacitive micromachine ultrasonic transducersArticle10.1109/58.935710