Celik O.Tiras, E.Ardali, S.Lisesivdin, S.B.Özbay, Ekmel2016-02-082016-02-08201118626351http://hdl.handle.net/11693/21947Magnetoresistance and Hall resistance measurements have been used to investigate the electronic transport properties of AlGaN/GaN based HEMTs. The Shubnikov-de Haas (SdH) oscillations from magnetoresistance, is obtained by fitting the nonoscillatory component to a polynomial of second degree, and then subtracting it from the raw experimental data. It is shown that only first subband is occupied with electrons. The two-dimensional (2D) carrier density and the Fermi energy with respect to subband energy (EF-E1) have been determined from the periods of the SdH oscillations. The in-plane effective mass (m*) and the quantum lifetime (τq) of electrons have been obtained from the temperature and magnetic field dependencies of the SdH amplitude, respectively. The in-plane effective mass of 2D electrons is in the range between 0.19 m0 and 0.22 m0. Our results for in-plane effective mass are in good agreement with those reported in the literature © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.EnglishAlGaNEffective massQuantum lifetimeShubnikov de HaasAlGaNAlGaN/gaNCarrier densityD electronsEffective massElectronic transport propertiesExperimental dataFermi energyHall resistanceIn-planeMagnetic field dependenciesNonoscillatoryQuantum lifetimeQuantum lifetimesShubnikov-de HaasSub-bandsSubband energiesElectric resistanceGallium nitrideMagnetic fieldsMagnetoelectronicsMagnetoresistanceTransport propertiesElectronsDetermination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTsArticle10.1002/pssc.201000594