Altinişik, E.Keskin, A.Yildiz, M.Demirbüken, M.2016-02-082016-02-082016243795http://hdl.handle.net/11693/25146Let Kn be the set of all n×n lower triangular (0,1)-matrices with each diagonal element equal to 1, Ln={YYT:Y ∈ Kn} and let cn be the minimum of the smallest eigenvalue of YYT as Y goes through Kn. The Ilmonen-Haukkanen-Merikoski conjecture (the IHM conjecture) states that cn is equal to the smallest eigenvalue of Y0Y0 T, where Y0 ∈ Kn with (Y0)ij = (Formula presented.) for i > j. In this paper, we present a proof of this conjecture. In our proof we use an inequality for spectral radii of nonnegative matrices. © 2015 Elsevier Inc.English(0, 1)-matrixEigenvalueFibonacci numberGCD matrixPositive matrixSpectral radiusEigenvalues and eigenfunctionsNumber theoryEigen-valueFibonacci numbersGCD matricesPositive matricesSpectral radiiMatrix algebraOn a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matricesArticle10.1016/j.laa.2015.11.023