Yildirim, A.Budunoglu, H.Deniz, H.Güler, Mustafa O.Bayındır, Mehmet2016-02-082016-02-0820101944-8252http://hdl.handle.net/11693/22165In this paper, we present a facile, template-free sol−gel method to produce fluorescent and highly mesoporous organically modified silica (ORMOSIL) thin films for vapor phase sensing of TNT. An alkyltrifunctional, methyltrimethoxysilane MTMS precursor was used to impart hydrophobic behavior to gel network in order to form the spring back effect. In this way, porous films (up to 74% porosity) are obtained at ambient conditions. Fluorescent molecules are physically encapsulated in the ORMOSIL network during gelation. Fluorescence of the films was found to be stable even after 3 months, proving the successful fixing of the dye into the ORMOSIL network. The functional ORMOSIL thin films exhibited high fluorescence quenching upon exposition to TNT and DNT vapor. Fluorescence quenching responses of the films are thickness-dependent and higher fluorescence quenching efficiency was observed for the thinnest film (8.6% in 10 s). The prepared mesoporous ORMOSIL thin films have great potential in new sensor and catalysis applications.Englishfluorescence quenchingmesoporous materialsORMOSILthin filmsTNT detectionAmbient conditionsFluorescence quenchingFluorescent moleculesGel networksMesoporousMesoporous thin filmsMethyltrimethoxysilaneOrganically modified silicaORMOSILPorous filmSol-gel methodsSpring backTemplate-freeTNT detectionVapor PhaseCoagulationExplosives detectionFluorescenceGelationGelsQuenchingSilicaSol-gel processThin filmsVaporsMesoporous materialsTemplate-free synthesis of organically modified silica mesoporous thin films for TNT sensingArticle10.1021/am100568c