Khan, Talha Masood2020-12-292020-12-292020-122020-122020-12-28http://hdl.handle.net/11693/54860Cataloged from PDF version of article.Thesis (Ph.D.): Bilkent University, Department of Materials Science and Nanotechnology, İhsan Doğramacı Bilkent University, 2020.Includes bibliographical references (leaves 61-69)Several studies have reported airborne ultrasound transmission systems focused on achieving beamforming. However, beam steering and beamforming for capacitive micromachined ultrasonic transducers (CMUTs) at high intensity remains to be accomplished. CMUTs, like other ultrasonic transducers, incorporate a loss mechanism to obtain a wide bandwidth. They are restricted to a limited amount of plate swing due to the gap between the radiating plate and the bottom electrode, along with a high dc bias operation. CMUTs can be designed to produce high-intensity ultrasound by employing an unbiased operation. This mode of operation allows the plate to swing the entire gap without collapsing, thus enabling higher intensity. In this study, we use an equivalent circuit-based model to design unbiased CMUT arrays driven at half the mechanical frequency. This model is cross verified using finite element analysis (FEA). CMUT arrays are produced in multiple configurations using a customized microfabrication process that involves anodic wafer bonding, a single lithographic mask, and a shadow mask. We use impedance measurements to characterize the microfabricated devices. We experimentally obtained the highest reported intensity using a microfabricated 2×2 CMUT array driven at resonance in a pulsed configuration. This array is also capable of beam steering and beamforming at a high intensity such that it can steer the entire half-space. The beam obtained from the array is in excellent agreement with the theoretical predictions. The amplitude and phase compensation for the devices remain constant that makes these arrays attractive for applications involving park assist, gesture recognition, and tactile displays.xv, 97 leaves : color illustrations, charts ; 30 cm.Englishinfo:eu-repo/semantics/openAccessAirborne ultrasoundCapacitive micromachined ultrasonic transducersCMUTTransducer arrayHigh IntensityBeam steeringMEMSUnbiased operationHalf frequency drivenMutual radiation impedanceLumped element modelLarge signal equivalent circuit modelArrayMicrofabricationDesign, fabrication and operation of a very high intensity CMUT transmit array for beam steering applicationsYüksek yoğunluklu CMUT iletim dizilerinin ışın yönlendirme uygulamaları için tasarımı, üretimi ve kullanımıThesisB124989