Acosta, D. M.Yıldız, YıldırayCraun, R. W.Beard, S. D.Leonard, M. W.Hardy, G. H.Weinstein, M.2016-02-082016-02-0820150021-8669http://hdl.handle.net/11693/28263Date of Conference: 19-22 August 2013Conference Name: AIAA Guidance, Navigation, and Control Conference, 2013This paper describes the maturation of a control allocation technique designed to assist pilots in recovery from pilot-induced oscillations. The control allocation technique to recover from pilot-induced oscillations is designed to enable next-generation high-efficiency aircraft designs. Energy-efficient next-generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. A common issue on aircraft with actuator rate limitations is they are susceptible to pilot-induced oscillations caused by the phase lag between the pilot inputs and control surface response. The control allocation technique to recover from pilot-induced oscillations uses real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a nonlinear aircraft model in the NASA Ames Research Center's Vertical Motion Simulator. Results indicate that the control allocation technique to recover from pilot-induced oscillations helps reduce oscillatory behavior introduced by control surface rate limiting, including the pilot-induced oscillation tendencies reported by pilots.EnglishActuatorsAircraftAircraft modelsControl surfacesEnergy efficiencyNASARecoveryPiloted evaluation of a control allocation technique to recover from pilot-induced oscillationsConference Paper10.2514/1.C032576