Mutlu, M.Raza, U.Saatci, Ö.Eyüpoğlu, E.Yurdusev, E.Şahin, Ö.2018-04-122018-04-122016-060946-2716http://hdl.handle.net/11693/38109MicroRNAs (miRNAs) are 20–22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.EnglishBiomarkerCell signalingDrug resistanceEpithelial-mesenchymal transition (EMT)miR-200cTGF-βZEB1/2Immunoglobulin enhancer binding proteinMicroRNA 200cPhosphatidylinositol 3 kinaseTranscription factor ZEB1Transforming growth factor betaUvomorulinVasculotropinAntineoplastic agentCadherinCDH1 protein, humanMicroRNAMIRN200 microRNA, humanTranscription factor ZEB1Transforming growth factor betaZEB1 protein, humanZEB2 protein, humanZinc finger E box binding homeobox 2Cancer growthCancer resistanceChemotherapy resistanceEpithelial mesenchymal transitionGene expressionGuard dogMultidrug resistanceNonhumanRadiotherapy resistanceReviewTherapy resistanceAnimalCell transformationDisease exacerbationDrug resistanceEpithelial mesenchymal transitionGene expression regulationGeneticsHumanMetabolismNeoplasmPathologySignal transductionAnimalsAntineoplastic AgentsCadherinsCell Transformation, NeoplasticDisease ProgressionDrug Resistance, NeoplasmEpithelial-Mesenchymal TransitionGene Expression Regulation, NeoplasticHumansMicroRNAsNeoplasmsSignal TransductionTransforming Growth Factor betaZinc Finger E-box Binding Homeobox 2Zinc Finger E-box-Binding Homeobox 1miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistanceReview10.1007/s00109-016-1420-5