Battal, E.Bolat, S.Tanrikulu, M. Y.Okyay, Ali KemalAkin, T.2016-02-082016-02-0820141862-6300http://hdl.handle.net/11693/25069ZnO is an attractive material for both electrical and optical applications due to its wide bandgap of 3.37 eV and tunable electrical properties. Here, we investigate the application potential of atomic-layer-deposited ZnO in uncooled microbolometers. The temperature coefficient of resistance is observed to be as high as-10.4% K-1 near room temperature with the ZnO thin film grown at 120 °C. Spectral noise characteristics of thin films grown at various temperatures are also investigated and show that the 120 °C grown ZnO has a corner frequency of 2 kHz. With its high TCR value and low electrical noise, atomic-layer-deposited (ALD) ZnO at 120 °C is shown to possess a great potential to be used as the active layer of uncooled microbolometers. The optical properties of the ALD-grown ZnO films in the infrared region are demonstrated to be tunable with growth temperature from near transparent to a strong absorber. We also show that ALD-grown ZnO can outperform commercially standard absorber materials and appears promising as a new structural material for microbolometer-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.EnglishZnOAtomsBolometersDepositionMetallic filmsOptical propertiesSemiconductor materialsTemperatureTemperature sensorsThin filmsZinc oxideAbsorber materialAtomic layer depositedElectrical conductionNear room temperatureOptical applicationsTemperature coefficient of resistanceUncooled microbolometersZnOAtomic layer depositionAtomic-layer-deposited zinc oxide as tunable uncooled infrared microbolometer materialArticle10.1002/pssa.201431195