Çağlayan, MustafaIrfan, MuhammadErcan, Kerem EmreKoçak, YusufÖzensoy, Emrah2021-02-192021-02-1920200926-3373http://hdl.handle.net/11693/75492In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.EnglishCC BY 4.0 DEED (Attribution 4.0 International)https://creativecommons.org/licenses/by/4.0/NOx abatementPhotocatalytic NOx oxidation-storage(PHONOS)Titania CalciumoxideAluminaDeNOx catalystsEnhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidityArticle10.1016/j.apcatb.2019.118227