Omam, Zahra RahimianKhalichi, BahramOsgouei, Ataollah KalantariGhobadi, AmirĂ–zbay, Ekmel2023-02-282023-02-282022-09-28http://hdl.handle.net/11693/111871Conference Name: International Conference on Electromagnetics in Advanced Applications (ICEAA)Date of Conference: 05-09 September 2022This paper presents a multi-band metamaterial-based absorber using phononic two-dimensional (2D) material. The structure consists of a top hexagonal boron nitride (hBN) layer on an aluminum nanograting structure deposited on a dielectric slab waveguide and a thick metallic reflector forming an MIM (metal-insulator-metal) configuration. The proposed absorber exhibits a hyperbolic phonon polariton (HPPs) in hBN, surface plasmon (SP) modes in the spacer (ZnTe: zinc telluride), and Fabry-Perot resonances in the MIM configuration, resulting in five sharp, high absorption peaks in the mid-infrared (MIR) spectral range. The proposed multi-band absorber can be utilized in various applications, ranging from optical detection devices to multispectral thermoelectric volt.EnglishMulti-band perfect absorbersMetasurfacesPlasmon-phonon polaritonsPolar materialsMulti-band light-matter interaction in hBN-based metasurface absorberConference Paper10.1109/ICEAA49419.2022.9899879