Hüseyin, Furkan2020-08-282020-08-282020-072020-072020-08-04http://hdl.handle.net/11693/53957Cataloged from PDF version of article.Thesis (M.S.): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2020.Includes bibliographical references (leaves 63-74).Fully convolutional networks (FCNs) have become the state-of-the-art models for cell instance segmentation in microscopy images. These networks are trained by minimizing a loss function, which typically defines the loss of each pixel separately and aggregates these pixel losses by averaging or summing. Since this pixel-wise definition of a loss function does not consider the spatial relations between the pixels’ predictions, it does not sufficiently impose the network to learn a particular shape(s). On the other hand, this ability of the network might be important for better segmenting cells, which commonly show similar morphological characteristics due to their natures. In response to this issue, this thesis introduces a new dynamic shape-preserving loss function to train an FCN for cell instance segmentation. This loss function is a weighted cross-entropy whose pixel weights are defined as prior-shape-aware. To this end, it calculates the weights based on the similarity between the shape of the segmented objects that the pixels belong to and the shape-priors estimated on the ground truth cells. This thesis uses Fourier descriptors to quantify the shape of a cell and proposes to define a similarity metric on the distribution of these Fourier descriptors. Working on four different medical image datasets, the experimental results demonstrate that this proposed loss function outperforms its counterpart for the segmentation of instances in these datasets.xiii, 74 leaves : illustrations (color), charts ; 30 cm.Englishinfo:eu-repo/semantics/openAccessDeep learningConvolutional neural networksCell instance segmentationMedical image analysisShape-preserving lossFourier descriptorsShape-preserving loss in deep learning for cell segmentationHücre bölütlenmesi için derin öğrenmede şekil-koruyan kayıpThesisB153114