Sarıtaş, Emine ÜlküLee, J.Nishimura, D.2020-04-102020-04-1020110278-0062http://hdl.handle.net/11693/53594Optimizing the diffusion-weighted imaging (DWI) parameters (i.e., the b -value and the number of image averages) to the tissue of interest is essential for producing high-quality apparent diffusion coefficient (ADC) maps. Previous investigation of this optimization was performed assuming Gaussian noise statistics for the ADC map, which is only valid for high signal-to-noise ratio (SNR) imaging. In this work, the true statistics of the noise in ADC maps are derived, followed by an optimization of the DWI parameters as a function of the imaging SNR. Specifically, it is demonstrated that the optimum b -value is a monotonically increasing function of the imaging SNR, which converges to the optimum b -value from previously proposed approaches for high-SNR cases, while exhibiting a significant deviation from this asymptote for low-SNR situations. Incorporating the effects of T 2 weighting further increases the SNR dependence of the optimal parameters. The proposed optimization scheme is particularly important for high-resolution DWI, which intrinsically suffers from low SNR and therefore cannot afford the use of the conventional high b -values. Comparison scans were performed for high-resolution DWI of the spinal cord, demonstrating the improvements in the resulting images and the ADC maps achieved by this method.EnglishSNR dependence of optimal parameters for apparent diffusion coefficient measurementsArticle10.1109/TMI.2010.2084583