Pınar, Mustafa Çelebi2019-02-212019-02-2120181382-6905http://hdl.handle.net/11693/50505The problem of designing a trade mechanism (for an indivisible good) between a seller and a buyer is studied in the setting of discrete valuations of both parties using tools of finite-dimensional optimization. A robust trade design is defined as one which allows both traders a dominant strategy implementation independent of other traders’ valuations with participation incentive and no intermediary (i.e., under budget balance). The design problem which is initially formulated as a mixed-integer non-linear non-convex feasibility problem is transformed into a linear integer feasibility problem by duality arguments, and its explicit solution corresponding to posted price optimal mechanisms is derived along with full characterization of the convex hull of integer solutions. A further robustness concept is then introduced for a central planner unsure about the buyer or seller valuation distribution, a corresponding worst-case design problem over a set of possible distributions is formulated as an integer linear programming problem, and a polynomial solution procedure is given. When budget balance requirement is relaxed to feasibility only, i.e., when one allows an intermediary maximizing the expected surplus from trade, a characterization of the optimal robust trade as the solution of a simple linear program is given. A modified VCG mechanism turns out to be optimal.EnglishBilateral tradeDualityInteger programmingMechanism designRobustnessVCG mechanismRobust trading mechanisms over 0/1 polytopesArticle10.1007/s10878-017-0177-2