Rasouli, Hamid RezaKim, J.Mehmood, NaveedSheraz, AliJo, M. K.Song, SeungwooKang, K.Kasırga, Talip Serkan2022-01-262022-01-262021-05-121530-6984http://hdl.handle.net/11693/76795Electric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.English2D materialsPhase transitionsIon transportMnO2Real time optical chemical vapor depositionElectric-field-induced reversible phase transitions in a spontaneously ion-Intercalated 2D metal oxideArticle0.1021/acs.nanolett.1c007351530-6992