San-Keskin, Nalan OyaÇelebioğlu, AslıSarıoğlu, Ömer FarukUyar, TamerTekinay, T.2019-02-212019-02-2120180927-7765http://hdl.handle.net/11693/49848Cyclodextrins (CD) are cyclic oligosaccharides produced from the enzymatic degradation of starch as a white powder form; on the other hand, they can be transformed into ultrathin electrospun fiber form by electrospinning technique. The electrospun cyclodextrin fibers (CD-F) can be quite attractive materials to encapsulate bacteria for bioremediation purposes. For instance, CD-F not only serve as a carrier matrix but also it serves as a feeding source for the encapsulated bacteria. In the present study, we demonstrate a facile approach by encapsulation of bacteria into CD-F matrix for wastewater treatment application. The natural and non-toxic properties of CD-F render a better bacterial viability for fibrous biocomposite. The encapsulated bacteria in CD-F exhibit cell viability for more than 7 days at 4 °C storage condition. Furthermore, we have tested the bioremediation capability of bacteria/CD-F biocomposite for the treatment of heavy metals (Nickel(II) and Chromium(VI)) and textile dye (Reactive Black 5, RB5). The bacteria/CD-F biocomposite has shown removal efficiency of Ni(II), Cr(VI) and RB5 as 70 ± 0.2%, 58 ± 1.4% and 82 ± 0.8, respectively. As anticipated, the pollutants removal capabilities of the bacteria/CD-F was higher compare to free bacteria since bacteria can use CD as an extra carbon source which promotes their growth rate. This study demonstrates that CD-F are suitable platforms for the encapsulation of bacterial cells to develop novel biocomposites that have bioremediation capabilities for wastewater treatment.EnglishBacteriaCyclodextrinElectrospinningEncapsulationHeavy metalsNanofibersReactive dyeEncapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewaterArticle10.1016/j.colsurfb.2017.10.047